前端基于 axios 实现批量任务调度管理器 demo

一、背景介绍

这是一个基于 axios 实现的批量任务调度管理器的 demo。它使用了axios、promise 等多种技术和原理来实现批量处理多个异步请求,并确保所有请求都能正确处理并报告其状态。

假设有一个场景:有一个任务列表,有单个任务的处理功能,但是用户提出需要增加批量处理任务的需求,那么如果 20 个任务,30 个任务,我们显然可以集成在一次请求里,无非就是服务器处理的压力变大,时间慢一点,但是如果越来越多的任务,用户要等待很久,后端为支持这些,只能改成异步处理,等待时间就很不可控了。并且在这个过程中,很有可能对正在排队的任务进行其他处理,会发生一些不必要的“错误”。所以提出前端对这些任务“批量处理”,并且对这些任务处理时可以先对任务进行过滤和去重等,统计并发请求的状态并展示,最后实现了一个简单的【批量任务调度管理器 demo】。

这个功能还略显青涩,所以后续又进行了优化和完善,最近有新的想法,借助第三方库,比如使用类似p-limit或 p-queue 的任务队列库来管理批量任务。这些库提供了更高级的功能,如任务调度、重试、延迟执行等,这些待实验。

二、功能介绍

这个 demo 实现了以下功能:

  1. 批量处理:用户可以一次性提交多个任务,这些任务会被批量处理,将请求任务分成固定大小(groupSize)的批次进行处理,以避免同时发送过多请求导致服务器压力过大或浏览器资源耗尽。
  2. 并发控制:通过递归调用 requestFunction 和控制 groupSize,实现了对并发请求数量的控制。在每次请求完成后再启动新的请求,确保同时运行的请求数量保持在合理范围内。(有优化
  3. 过滤和去重:使用 filter 和 findIndex 方法,对 tableData 进行过滤和去重,确保每个任务只被处理一次,也可以自定义其他处理方式。
  4. 状态管理:计数(successCount 和 errorCount)处理结果,使用 ElMessage 和 ElNotification 进行用户提示,反馈批量操作的结果。
  5. 异步操作和错误处理:通过 axios 库发送异步 HTTP 请求,使用 then, catch 和 finally 方法处理请求结果和错误,并在出错时记录错误信息。(有优化

三、功能代码

// 批量处理多个任务
const batchOperation = (title, operationType, axiosConfig, shouldFilterList) => {startLoading() // 可忽略,自定义的加载动画const groupSize = 5 // 分组,每组五个请求let successCount = 0 // 成功的请求let errorCount = 0 // 失败的请求let errorMessages = [] // 请求失败时的错误信息记录// 过滤得到需要发生请求的任务列表const requestTaskList = shouldFilterList? tableData.value.filter((item, index, arr) => arr.findIndex((val) => val.id == item.id) == index): tableData.valueif (requestTaskList.length == 0) {ElMessage.error('没有可操作的任务!')stopLoading()return}// 处理请求后的成功或者失败const handleResponse = (error) => {if (error) {errorCount++errorMessages.push(error)} else {successCount++}if (successCount + errorCount === requestTaskList.length) {stopLoading()const message =errorCount === 0? `${requestTaskList.length} 个任务,全部处理成功。`: `${requestTaskList.length} 个任务,${successCount} 个处理成功,${errorCount} 个处理失败。`ElNotification({title: `${title}结果`,message,type: errorCount === 0 ? 'success' : 'warning'})if (errorCount > 0) {console.error('处理失败的任务:', errorMessages)}}}//发送请求--借助递归const requestFunction = () => {// isUnmount是控制是否卸载当前组件if (isUnmount.value || nowIndex >= requestTaskList.length) {return}const row = requestTaskList[nowIndex++]const params = { ...row } // 自定义传参axios.request({ url: axiosConfig.url, method: axiosConfig.method, params }).then((res) => {if (res.data.code == 200) {handleResponse(null)} else {handleResponse(res.data.message)}}).catch(handleResponse).finally(requestFunction)}let nowIndex = 0for (let i = 0; i < groupSize; i++) {requestFunction()}
}// 批量处理
const batchAll = () => {batchOperation('标题','batch', //处理参数的标识{url: '/batch-task',method: 'get',params: { task_id: '', id: '' }},true // 是否过滤列表)
}// 可忽略
const startLoading = () => {// 显示加载动画或状态containerLoading.value = true
}const stopLoading = () => {// 隐藏加载动画或状态containerLoading.value = false
}// 因为是vue,所以在组件卸载之前,取消所有未完成的请求----可忽略
onBeforeUnmount(() => {isUnmount.value = true
})

以上功能能实现的是上述阐述的功能,也算一个简单的批量任务调度管理器,但是还有很多优化方向:

  1. 错误信息收集和展示:
    当前的错误处理仅记录了错误计数。可以改进为记录详细的错误信息,并在批量操作完成后展示这些错误信息,帮助用户理解哪些任务失败了以及原因(这个看需求)。
  2. 动态并发控制:
    使用动态并发控制,根据当前系统负载或网络状况调整并发请求数量,进一步优化性能和稳定性(这个需要依靠工具库完成)。
  3. 任务重试机制:
    为失败的请求添加重试机制,例如在某个请求失败后,可以重试一定次数,以提高成功率(这个看需求)。
  4. Promise.all 优化:
    使用 Promise.all 处理每一批次的请求,而不是递归调用 requestFunction,可以使代码更简洁,并减少递归带来的栈深度问题(这个现在就可以优化)。

四、功能优化

现在做的是基于 promise.all 的优化。我们要知道,promise 本来就是 JS 有的一个 API,那么当时我为何不考虑它呢,还是我当时没有考虑到。
Axios 是基于 Ajax 和 Promise 封装,本来就可以利用 Promise 来更好的管控请求回调嵌套造成的回调地狱,如果不加控制,查了一下,那种递归确实可能会造成调用栈过深,出现栈溢出问题(我还没有遇到过,不知道这种情况是什么样的)。

优化前后比较

通过递归调用 requestFunction 来处理任务,这种方式虽然有效,但有以下几个缺点:

1. 递归深度问题:对于大量任务,递归调用可能导致调用栈过深,出现栈溢出问题。
2. 复杂性和可维护性:递归调用使代码较为复杂,逻辑不直观,不容易维护。
3. 难以控制并发:递归调用在控制并发请求数量上不够灵活。

优化后的方式使用了 Promise.all,通过批量处理的方式来提高代码的可读性和可靠性:

1. 避免递归:使用 Promise.all 处理每个批次的请求,避免了递归调用导致的栈深度问题。
2. 简化代码:优化后的代码结构更加清晰,逻辑更加直观,便于维护。
3. 控制并发:批量处理的方式更加灵活,可以方便地控制并发请求的数量。
4. 更好的错误处理:单独处理每个请求的错误,不会因为一个请求失败而导致整个批次停止

优化代码

// 批量处理
const batchOperation = (title, operationType, axiosConfig, shouldFilterList, tabs) => {startLoading()const groupSize = 5let successCount = 0let errorCount = 0let errorMessages = []const requestTaskList = shouldFilterList? tableData.value.filter((item, index, arr) => arr.findIndex((val) => val.id == item.id) == index): tableData.valueif (requestTaskList.length === 0) {ElMessage.error('没有可操作的任务!')stopLoading(tabs)return}const handleResponse = () => {if (successCount + errorCount === requestTaskList.length) {stopLoading(tabs)const message =errorCount === 0? `${requestTaskList.length} 个任务,全部处理成功。`: `${requestTaskList.length} 个任务,${successCount} 个处理成功,${errorCount} 个处理失败。`ElNotification({title: `${title}结果`,message,type: errorCount === 0 ? 'success' : 'warning'})if (errorCount > 0) {console.error('处理失败的任务:', errorMessages)}}}const makeRequest = (row) => {let params = {}return axios.request({ url: axiosConfig.url, method: axiosConfig.method, params }).then((res) => {if (res.data.code === 200) {successCount++} else {errorCount++errorMessages.push(res.data.message)}}).catch((error) => {errorCount++errorMessages.push(error.message || error)})}const executeBatch = (batch) => {return Promise.all(batch.map(makeRequest)).catch(() => {}) // 忽略批次中的错误,单独处理}let nowIndex = 0const batches = []while (nowIndex < requestTaskList.length) {const batch = requestTaskList.slice(nowIndex, nowIndex + groupSize)batches.push(executeBatch(batch))nowIndex += groupSize}Promise.all(batches).finally(handleResponse)
}

五、总结

两者其实都是并发处理一组又一组的请求,从性能上,我选择 20 个任务,实现的效果,优化后和优化前:
在这里插入图片描述

可以看得出,其实两者没有什么区别,可能因为我的实验数量太少,但是我查阅了资料,得出使用 Promise.all 的优点:

代码简洁:Promise.all 的实现方式较为简单,代码可读性强。
无栈深度问题:Promise.all 没有递归调用的问题,不会导致栈溢出。
就以上两点,也算是有了一点点效果吧。

最后,想试试另一种工具库来实现这个功能,就是借助上面提到的库,未完~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/386292.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PyQt ERROR:ModuleNotFoundError: No module named ‘matplotlib‘

Solution:打开cmd输入指令下载malplotlib pip install matplotlib

2024-07-27 Unity Excel —— 使用 EPPlus 插件读取 Excel 文件

文章目录 1 前言2 项目地址3 使用方法3.1 写入 Excel3.2 读取 Excel3.3 读写 csv 文件 4 ExcelSheet 代码 1 前言 ​ 前几日&#xff0c;一直被如何在 Unity 中读取 Excel 的问题给困扰&#xff0c;网上搜索相关教程相对古老&#xff08;4、5 年以前了&#xff09;。之前想用 …

力扣高频SQL 50题(基础版)第二十五题

文章目录 力扣高频SQL 50题&#xff08;基础版&#xff09;第二十五题619.只出现一次的最大数字题目说明实现过程准备数据实现方式结果截图 力扣高频SQL 50题&#xff08;基础版&#xff09;第二十五题 619.只出现一次的最大数字 题目说明 MyNumbers 表&#xff1a; ------…

wpf中轮询显示图片

本文的需求是&#xff0c;在一个文件夹中&#xff0c;放一堆图片的集合&#xff0c;然后在wpf程序中&#xff0c;按照定时的方式&#xff0c;循序显示照片。 全部代码 1.声明一个PictureInfo类 namespace WpfApp1 {public class PictureInfo{public string? FileName { get; …

【计算机网络】三次握手、四次挥手

问&#xff1a;三次握手 四次挥手 TCP 连接过程是 3 次握手&#xff0c;终止过程是 4 次挥手 3次握手 第一步&#xff1a;客户端向服务器发送一个带有 SYN&#xff08;同步&#xff09;标志的包&#xff0c;指示客户端要建立连接。 第二步&#xff1a;服务器收到客户端的请求…

Java设计模式—单例模式(Singleton Pattern)

目录 一、定义 二、应用场景 三、具体实现 示例一 示例二 四、懒汉与饿汉 饿汉模式 懒汉模式 五、总结 六、说明 一、定义 二、应用场景 ‌单例模式的应用场景主要包括以下几个方面&#xff1a; ‌日志系统&#xff1a;在应用程序中&#xff0c;通常只需要一个日…

Spring之Spring Bean的生命周期

Spring Bean的生命周期 通过BeanDefinition获取bean的定义信息调用构造函数实例化beanBean的依赖注入处理Aware接口&#xff08;BeanNameAware、BeanFactoryAware、ApplicationContextAware&#xff09;Bean的后置处理器BeanPostProcessor-前置初始化方法&#xff08;Initiali…

关于@JsonSerialize序列化与@JsonDeserialize反序列化注解的使用(密码加密与解密举例)

注&#xff1a;另一种方式参考 关于TableField中TypeHandler属性&#xff0c;自定义的类型处理器的使用&#xff08;密码加密与解密举例&#xff09;http://t.csdnimg.cn/NZy4G 1.简介 1.1 序列化与反序列化 学习注解之前&#xff0c;我们可以先了解一下什么是序列化与反序列…

115. 不同的子序列 dp入门(一)详细推导dp转移方程式

目录 1. 题目引入&#xff1a; 2. 动态规划解法 2.1 动态dp表示 2.2 动态方程推导: 2.3 具体分析 2.4 初始化 3. 代码如下 java版 c版 Python版 1. 题目引入&#xff1a; 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果…

计算机基础(day1)

1.什么是内存泄漏&#xff1f;什么是内存溢出&#xff1f;二者有什么区别&#xff1f; 2.了解的操作系统有哪些&#xff1f; Windows&#xff0c;Unix&#xff0c;Linux&#xff0c;Mac 3. 什么是局域网&#xff0c;广域网&#xff1f; 4.10M 兆宽带是什么意思&#xff1f;理论…

OAK-FFC 分体式相机使用入门介绍

概述 OAK FFC 主控板和多种可选配镜头模组非常适合灵活的搭建您的3D人工智能产品原型。由于镜头是分体式的&#xff0c;因此你可以根据需要测量的距离&#xff0c;自定义深度相机安装基线&#xff0c;并根据你的项目要求&#xff08;分辨率、快门类型、FPS、光学元件&#xff…

项目风险管理:从理论到实践的探索

项目风险管理&#xff1a;从理论到实践的探索 前言一、项目风险识别二、项目风险应对策略三、综合应对策略结语 前言 在当今快速变化的商业环境中&#xff0c;项目管理已成为组织实现目标的关键工具。然而&#xff0c;项目的成功往往伴随着各种不确定性和潜在风险。有效的风险管…

【Git-驯化】一文搞懂git中rm命令的使用技巧

【Git-驯化】一文搞懂git中rm命令的使用技巧 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 免费获取相关内容文档关注&#xff1a;微信公…

五、Spring Boot - 上手篇(1)

&#x1f33b;&#x1f33b;目录 一、快速入门&#xff1a;创建第一个SpringBoot 工程1.1 点击File--->New--->Project...1.2 选择版本和依赖的相关骨架包1.3 设置项目保存目录1.4 项目创建完成&#xff0c;工程主界面如下1.5 项目说明1.6 启动项目1.7 编写 HelloControl…

快速上手,spring boot3整合task实现定时任务

在已经上线的项目中&#xff0c;定时任务是必不可少的。基于spring boot自动装配的原理&#xff0c;我们要集成task定时任务还是非常简单的。只需要简单的两步就可以实现。 1、创建一个spring boot项目&#xff0c;并在项目的启动类&#xff08;也不一定非要是启动类&#xff…

如何排查GD32 MCU复位是由哪个复位源导致的?

上期为大家讲解了GD32 MCU复位包括电源复位和系统复位&#xff0c;其中系统复位还包括独立看门狗复位、内核软复位、窗口看门狗复位等&#xff0c;在一个GD32系统中&#xff0c;如果莫名其妙产生了MCU复位&#xff0c;如何排查具体是由哪个复位源导致的呢&#xff1f; GD32 MC…

【RabbitMQ】MQ相关概念

一、MQ的基本概念 定义&#xff1a;MQ全称为Message Queue&#xff0c;是一种提供消息队列服务的中间件&#xff0c;也称为消息中间件。它允许应用程序通过读写队列中的消息来进行通信&#xff0c;而无需建立直接的连接。作用&#xff1a;主要用于分布式系统之间的通信&#x…

vulntarget-b

实际部署之后centos7 的ip有所变动分别是 :192.168.127.130以及10.0.20.30 Centos7 老规矩还是先用fscan扫一下服务和端口&#xff0c;找漏洞打 直接爆出来一个SSH弱口令…&#xff0c;上来就不用打了&#xff0c;什么意思&#xff1f;&#xff1f;&#xff1f; 直接xshell…

STM32--HAL库--定时器篇

一&#xff1a;如何配置定时器 打开对应工程串口配置好的工程&#xff08;上一篇博客&#xff09;做如下配置&#xff1a; 定时器的中断溢出时间计算公式是&#xff1a; 由图得T100*1000/100MHz 注&#xff1a;100MHz100000000 所以溢出时间等于1ms 关于上图4的自动重装…

【网络安全】文件上传黑白名单及数组绕过技巧

不安全的文件上传&#xff08;Unsafe FileUpload&#xff09; 不安全的文件上传是指Web应用程序在处理用户上传的文件时&#xff0c;没有采取足够的安全措施&#xff0c;导致攻击者可能利用这些漏洞上传恶意文件&#xff0c;进而对服务器或用户造成危害。 目录 一、文件上传…