【数据结构】了解哈希表,解决哈希冲突,用Java模拟实现哈希桶

哈希表的概念

哈希表(Hash Table)是一种高效的数据结构,用于实现快速的数据存储和检索。它通过将数据映射到一个数组的索引位置,从而能够在平均情况下实现O(1)的时间复杂度进行查找、插入和删除操作。

哈希表的基本概念包括以下几个部分:

  1. 哈希函数:哈希表使用哈希函数将输入的数据(通常是键)转换为固定大小的数组索引。一个好的哈希函数能够有效地将不同的数据映射到不同的索引,减少冲突的概率。

  2. 冲突处理:由于不同的键可能会通过哈希函数映射到相同的索引,这种情况被称为冲突。常见的冲突处理方法有链地址法(在同一个索引处使用链表存储所有冲突的元素)和开放地址法(通过探测寻找下一个可用的索引)。

  3. 负载因子:负载因子是哈希表中存储的元素数量与哈希表大小的比率。负载因子过高会导致冲突增加,影响性能,因此通常在达到一定的负载因子后会对哈希表进行扩展和重新哈希。

哈希表在实际应用中广泛用于快速查找和存储数据,例如数据库索引、缓存系统等,是一种非常实用的数据结构。

例如:数据集合{1,7,6,4,5,9}。

哈希函数设置为:hash(key) = key % capacity; capacity为存储元素底层空间总的大小。

哈希冲突的概念

哈希冲突(Hash Collision)是指在哈希表中,不同的输入数据(通常是键)经过哈希函数处理后,得到了相同的哈希值,进而映射到了哈希表的同一个索引位置。这种现象不可避免,因为哈希函数将任意大小的数据映射到固定大小的数组索引,而输入数据的范围通常大于输出哈希值的范围,从而导致不同的数据可能会对应相同的哈希值。

哈希冲突的处理方法:

为了有效地处理哈希冲突,主要有以下几种常见的方法:

  1. 链地址法(Separate Chaining)

    • 在哈希表的每个索引位置,使用一个链表或其他数据结构来存储所有哈希值相同的元素。这样,当发生冲突时,新元素可以直接添加到链表中。
    • 优点:实现简单,容易扩展,链表的长度通常是较短的,性能受到较少影响。
    • 缺点:当冲突严重时,链表长度增加,会影响查找性能。
  2. 开放地址法(Open Addressing)

    • 当发生哈希冲突时,哈希表会寻找下一个空闲的位置,将新元素放入该位置,而不是在同一索引位置存储。
    • 包括线性探测、二次探测和双重哈希等具体策略来寻找空位。
    • 优点:内存占用较低,数据存储在连续的数组中,缓存友好。
    • 缺点:可能导致“聚集”现象,即连续的多个元素都占据相邻的索引,影响性能。

哈希冲突的影响:

哈希冲突的存在会对哈希表的性能产生影响,特别是在查找、插入和删除元素时。冲突越多,导致的查找时间可能从O(1)增长到O(n)(在最坏的情况下)。因此,选择合适的哈希函数以减少冲突的发生,以及选择有效的冲突处理策略,是设计高效哈希表的关键。

避免哈希冲突的方法

哈希函数设计

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。 哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。
  • 哈希函数计算出来的地址能均匀分布在整个空间中。
  • 哈希函数应该比较简单。

常见哈希函数

直接定制法

取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B 优点:简单、均匀 缺点:需要事先知道关键字的分布情况 使用场景:适合查找比较小且连续的情况。

除留余数法

设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址。

平方取中法

假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址 平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况。

 折叠法

折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。

随机数法

选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中random为随机数函数。

负载因子调节

负载因子(Load Factor)是哈希表中一个重要的度量,用于评估哈希表的使用效率和性能。负载因子定义为哈希表中存储的元素数量与哈希表的总容量(即数组大小)之间的比率,通常用公式表示为:

负载因子 = 当前元素数量 / 哈希表的容量

负载因子的意义:

  1. 性能指标:负载因子能够反映哈希表的性能。当负载因子较低时,哈希表中的元素分布较为稀疏,冲突较少,查找、插入和删除操作的效率较高。而当负载因子较高时,冲突可能增多,导致这些操作的性能下降。

  2. 自适应调整:为了保持哈希表的高效性能,通常在负载因子达到一定阈值时(例如0.7或0.75),会进行负载因子的调节。调节方法通常包括扩展哈希表的容量,并重新计算所有元素的哈希值以保证它们被均匀分布。

负载因子的调节过程:

  1. 扩展哈希表:当负载因子超过预设阈值时,哈希表需要扩展容量,通常会将哈希表的容量增加为原来的两倍,或者其他合适的数值。

  2. 重新哈希:扩展容量后,所有现有元素必须经过哈希函数重新计算哈希值,并根据新容量重新分配到新的索引位置。这一过程被称为重新哈希(Rehashing)。

  3. 减少容量:在某些情况下,如果哈希表中的元素数量显著减少,负载因子低于某一阈值,可能会考虑缩减哈希表的容量,以减少空间浪费。

总结:

通过合理地调节负载因子,可以保持哈希表高效的性能,降低冲突率,并确保在各种操作下的时间复杂度保持尽可能接近O(1)。在设计哈希表时,选择合适的负载因子阈值和扩展策略是至关重要的。

 解决哈希冲突的方法

开放地址法(闭散列)

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。

线性探测

线性探测(Linear Probing)是一种开放地址法的冲突解决策略,主要用于处理哈希表中的哈希冲突。当多个元素通过哈希函数映射到相同的索引位置时,线性探测使用线性搜索的方法寻找下一个可用的位置来存放新元素。

线性探测的工作原理:
  1. 哈希插入

    • 当需要插入一个元素到哈希表时,首先计算该元素的哈希值,找到其对应的数组索引。
    • 如果该索引位置已经被占用(发生冲突),则按顺序检查后续的索引(即当前索引 + 1,当前索引 + 2,依此类推)。
    • 继续检查直到找到一个空闲的索引位置,将新元素插入。
  2. 哈希查找

    • 查找一个元素时,同样计算出其哈希值并找到对应的索引。
    • 如果该位置的元素与查找的元素不匹配,就沿着线性探测的方式依次检查下一个索引。
    • 如果遇到空位,说明该元素不在表中;如果找到匹配的元素,则返回该元素。
  3. 哈希删除

    • 删除元素时,可以简单地将对应的索引位置设置为“删除”状态(或特殊标记),但仍需注意后续查找时的线性探测,以防止链式冲突查找的失败。
线性探测的优缺点:

优点

  • 实现简单,逻辑清晰。
  • 在有序的序列中存储元素时,能够保持元素的连贯性,提高缓存命中率。

缺点

  • 聚集现象(Clustering):线性探测容易导致“聚集”现象,即相邻的元素趋向于占用相邻的索引,这会影响后续插入和查找的效率。
  • 在负载因子较高时,性能会显著下降,查找时间可能接近O(n)。

总结:

线性探测是一种简洁而有效的冲突解决策略,适用于负载因子较低的哈希表。在负载因子过高时,考虑其他冲突解决方法(如链地址法或二次探测)可能会得到更好的性能表现。

二次探测

二次探测(Quadratic Probing)是一种开放地址法的冲突解决策略,用于哈希表中处理哈希冲突。与线性探测不同,二次探测通过使用平方函数生成一个探测序列,以寻找下一个可用的位置。

二次探测的工作原理:

  1. 哈希查找

    • 查找一个元素时,同样计算出其哈希值并找到对应的索引。
    • 如果该位置的元素不匹配所查找的元素,则按二次探测的方式依次检查后续索引(即使用平方探测公式)。
    • 如果遇到空位,说明该元素不在表中;如果找到匹配的元素,则返回该元素。
  2. 哈希删除

    • 删除元素时,可以将对应的索引位置设置为“删除”状态(或特殊标记),这需要特别注意,因为后续查找仍会使用该位置进行探测。
二次探测的优缺点:

优点

  • 相比线性探测,二次探测能减少聚集现象(Clustering)。由于索引在探测中不再是线性分布,避免了多个元素趋向于占用相邻空间的问题。
  • 在一定程度上,能够提高查找和插入操作的效率,特别是当负载因子较高时。

缺点

  • 由于使用平方函数,可能形成某些未探测到的索引,从而造成一些空间浪费。
  • 实现相对较复杂,特别是在处理数组大小不是2的幂时,可能需要额外的处理逻辑以确保探测的覆盖性。

总结:

二次探测是一种有效的冲突解决策略,适用于哈希表需要保持较低负载因子且冲突较多的情况。通过减少聚集现象,二次探测可以在一定程度上提高哈希表的效率,但在实现上需要关注数组大小和探测方式的合理性。

链地址法(开散列)

链地址法(Separate Chaining)是一种用于处理哈希表中哈希冲突的常见策略。在哈希表中,当多个元素通过哈希函数映射到相同的索引位置时,链地址法能够有效地将这些元素组织在一起,避免冲突造成的元素丢失。

链地址法的工作原理:

  1. 哈希表结构

    • 哈希表的每个索引位置通常是一个指向链表(或其他数据结构,如树)的指针。这意味着每个索引位置可以存储多个元素。
  2. 哈希插入

    • 当需要插入一个元素时,首先计算该元素的哈希值,找到对应的索引位置。
    • 如果该位置为空,直接将元素放入;如果该位置已经有元素,则将新元素添加到该索引位置对应的链表中(可以是链表的头部或尾部,具体实现可以不同)。
  3. 哈希查找

    • 查找某个元素时,同样计算元素的哈希值,并找到对应的索引位置。
    • 在该位置的链表中进行线性搜索,查找是否存在与目标元素相匹配的值。
  4. 哈希删除

    • 删除元素时,先找到元素的哈希值对应的链表,然后在链表中进行查找,如果找到匹配的元素,就将其从链表中移除。

链地址法的优缺点:

优点

  • 实现简单,逻辑清晰,能够有效地处理冲突而不影响其他元素的存储。
  • 不需要在插入时重新计算和移动其他元素,扩展性较好。
  • 适合负载因子较高的情况,只要存储的链表不会过长,性能依然可以得到保证。

缺点

  • 在负载因子很高的情况下,链表长度可能增加,查找性能可能退化到O(n)。
  • 每个索引位置可能占用额外的存储空间,特别是在链表较长时,内存使用不是很高效。
  • 需要处理内存管理(如动态分配和释放),可能增加实现的复杂性。

总结:

链地址法是一种有效的哈希冲突解决策略,能够通过将冲突元素存储在链表中来维持哈希表的高效性。其简单易实现的特性使其在许多实际应用中得到了广泛的采用,尤其是在预期有较多冲突的情况下,能够保持较好的性能。

代码模拟实现链地址法(哈希桶)

public class HashBuck {static class Node {public int key;public int value;public Node next;public Node(int key,int val) {this.key = key;this.value = val;}}public Node[] elem;public int usedSize;public HashBuck() {this.elem = new Node[10];}//往哈希桶里面放元素public void put(int key,int val) {Node node = new Node(key,val);int tmp = key % this.elem.length;Node cur = this.elem[tmp];while(cur.next != null) {if(cur.value == val) {cur.value = val;return;}cur = cur.next;}cur.next = node;this.usedSize++;//负载因子超过了0.75,需要扩容if(loadFactor() >= 0.75) {//调用扩容函数resize();}}//扩容函数private void resize() {Node[] tmpArr = new Node[this.elem.length*2];for (int i = 0; i < this.elem.length; i++) {Node cur = this.elem[i];while(cur != null) {//记录cur.next的位置Node curNext = cur.next;int newIndex = cur.key / tmpArr.length;//头插法cur.next = tmpArr[newIndex];tmpArr[newIndex] = cur;cur = curNext;}}this.elem = tmpArr;}//求出当前负载因子private double loadFactor() {return this.usedSize*1.0 / this.elem.length;}//给定一个key值在哈希桶里面找到并返回其value值public int get(int key) {int index = key % this.elem.length;Node cur = this.elem[index];while(cur != null) {if(cur.key == key) {return cur.value;}cur = cur.next;}return -1;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/388707.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java面向对象重点总结

文章目录 java面向对象重点总结类与实例构造方法方法重载属性与修饰符封装继承多态重构抽象类接口抽象类和接口的区别&#xff1a;集合泛型 java面向对象重点总结 对象是一个自包含的实体&#xff0c;用一组可识别的特性和行为来标识。 面向对象编程&#xff0c;英文叫Object…

flink 1.17 测试

1、配置 2、测试&#xff1a; ./bin/flink run-application -t yarn-application -Dyarn.application.namewordcount -c org.apache.flink.streaming.examples.wordcount.WordCount ./examples/streaming/WordCount.jar --input hdfs://jy/tmp/input --output hdfs://jy/tmp/o…

C++学习:C++是如何运行的

C 是一种强类型的编程语言&#xff0c;支持面向对象、泛型和低级内存操作。它的工作机制包括从编写源代码到生成可执行文件的一系列步骤。C与文件无关&#xff0c;文件只是容纳运行内容的载体&#xff0c;需要对文件以目标系统的规则编译后&#xff0c;才能在目标系统中运行。 …

java算法递归算法练习-数组之和

简单找个题目练习一下递归算法&#xff0c;输入一组数组&#xff0c;使用递归的方法计算数组之和。其实这个题目&#xff0c;用循环的方式也很简单就能解决&#xff0c;直接循环遍历一下相加就行了&#xff0c;但是我们用来练习一下递归。 先来找基线条件和递归条件 基线条件…

springboot+webSocket对接chatgpt

webSocket对接参考 话不多说直接上代码 WebSocket package com.student.config;import com.alibaba.fastjson2.JSONArray; import com.alibaba.fastjson2.JSONObject; import lombok.extern.slf4j.Slf4j; import org.springframework.http.MediaType; import org.springfram…

matplotLib在图中标出最后一个点的值

import matplotlib.pyplot as plt import numpy as np# 生成100个随机数据 data np.random.rand(100)# 绘制数据 plt.plot(data, labelData Points)# 获取最后一个数据点的位置和值 last_x len(data) - 1 last_y data[-1]# 用红圈标出最后一个点 plt.plot(last_x, last_y, r…

STM32-寄存器DMA配置指南

配置步骤 在STM32F0xx中文参考手册中的DMA部分在开头给出了配置步骤 每个通道都可以在外设寄存器固定地址和存储器地址之间执行 DMA 传输。DMA 传输的数据 量是可编程的&#xff0c;最大达到 65535。每次传输之后相应的计数寄存器都做一次递减操作&#xff0c;直到 计数为&am…

jdk环境、tomcat环境

回顾复习 安装nodejs&#xff0c;和jdk一样的软件运行环境 yum -y list installed|grep epel #是否安装epel yum -y install nodejs node -v #查看版本号 下载对应的nodejs软件npm yum -y install npm npm -v #查 npm set config ....淘宝镜像 安装vue/cli…

[ACTF2020 新生赛]BackupFile1

打开题目 利用disearch扫描&#xff0c;发现源文件index.php.bak 下载下来 打开文件 代码审计&#xff0c;翻译一下 翻译代码为&#xff1a; <?php include_once "flag.php"; //这一行使用 include_once 函数来包含&#xff08;或插入&#xff09;另一个 PHP …

Win11系统文件资源管理器鼠标右键卡顿解决方法

引用链接&#xff1a; Windows 11文件资源管理器崩溃怎么解决&#xff1f;看看这7个解决办法&#xff01;

Redis的集群 高可用

文章目录 Redis基本概念主从复制哨兵模式故障切换集群 Redis基本概念 Redis集群三种模式 主从复制&#xff1a;奇数台 3&#xff1a; 一主两从 哨兵模式&#xff1a;3&#xff1a; 1主两从 cluster&#xff1a;6 主从复制&#xff1a;和mysql的主从复制类似&#xff0c;主…

C++ string类

目录 为什么要有string类&#xff1f; auto和范围for 1. auto 2. 范围for 一. 标准库中string类的简单使用 二. string类的常用接口说明 1. string类对象的常见构造 2. string类对象的容量操作 3. string类对象的访问及遍历操作 4. string类对象的修改与查找操作 插入…

【Web 前端开发】vue3开发环境部署

1、安装 Node.js 和 npm 访问 Node.js 官网 下载并安装最新的 LTS 版本。 安装完成后&#xff0c;打开命令行工具&#xff0c; 输入 node -v 和 npm -v 检查安装是否成功。 node -vnpm -v 如下图&#xff1a; 2、安装 Vue CLI 在命令行工具中输入以下命令安装 Vue CLI&…

微信小程序开发:宿主环境—组件

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

详解DDR3原理以及使用Xilinx MIG IP核(app 接口)实现DDR3读写测试

系列文章目录 &#xff08;1&#xff09;详解SDRAM基本原理以及FPGA实现读写控制 文章目录 系列文章目录一、DDR简介1.1 什么是 SDRAM、DDR、DDR2、DDR31.2 SDRAM、DDR、DDR2、DDR3核心频率、工作频率以及等效频率的计算1.3 DDR3带宽以及容量的计算 二、MIG IP核的介绍三、MIG…

机器学习 第8章-集成学习

机器学习 第8章-集成学习 8.1 个体与集成 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务&#xff0c;有时也被称为多分类器系统(multi-classifersystem)、基于委员会的学习(committee-based learning)等。 图8.1显示出集成学习的一般结构:先产生一组“…

【附安装包】CentOS7(Linux)详细安装教程(手把手图文详解版)

目前流行的虚拟机软件有VMware、Virtual Box和Virtual PC等等&#xff0c;其中最常用的就是VMware。 而centos是Linux使用最广泛的版本之一。 教程开始教程有许多不完备之处&#xff0c;大佬请忽略。。。 1.安装VMware 首先需要准备VMware的安装包以及Ubuntu的ISO镜像&#…

鸿蒙系统开发【设备安全服务-应用设备状态检测】安全

设备安全服务-应用设备状态检测 介绍 本示例向您介绍如何在应用中获取DeviceToken用于对应用的设备状态进行检测。 需要使用设备安全服务接口 kit.DeviceSecurityKit。 效果预览 Sample工程的配置与使用 在DevEco中配置Sample工程的步骤如下 [创建项目]及[应用]。打开Sam…

数据结构与算法 - 递归

一、递归 1. 概述 定义&#xff1a;在计算机科学中&#xff0c;递归是一种解决计算问题的方法&#xff0c;其中解决方案取决于同一类问题的更小子集。 比如单链表递归遍历的例子&#xff1a; void f(Node node) {if(node null) {return;}println("before:" node…

Animate软件基础:在时间轴中添加或插入帧

FlashASer&#xff1a;AdobeAnimate2021软件零基础入门教程https://zhuanlan.zhihu.com/p/633230084 FlashASer&#xff1a;实用的各种Adobe Animate软件教程https://zhuanlan.zhihu.com/p/675680471 FlashASer&#xff1a;Animate教程及作品源文件https://zhuanlan.zhihu.co…