【源码阅读】Redisson lock源码

目录

底层原理

加锁机制

锁互斥机制

可重入锁机制

总结 


Redisson 加锁非常简单,还支持 redis 单实例、redis 哨兵、redis cluster、redis master-slave 等各种部署架构

RLock lock = redisson.getLock("cyk-test");
lock.lock();
lock.unlock();

底层原理

img

加锁机制

废话不多说,直接看源码,下面的代码先不看,先看 tryAcquire 是如何获取锁的

private void lock(long leaseTime, TimeUnit unit, boolean interruptibly) throws InterruptedException {long threadId = Thread.currentThread().getId();Long ttl = tryAcquire(-1, leaseTime, unit, threadId);// lock acquiredif (ttl == null) {return;}CompletableFuture<RedissonLockEntry> future = subscribe(threadId);pubSub.timeout(future);RedissonLockEntry entry;if (interruptibly) {entry = commandExecutor.getInterrupted(future);} else {entry = commandExecutor.get(future);}...
}

查看 tryAcquire 方法,点进去看发现调用了 tryAcquireAsync0 方法,这里 RFuture 继承自 java.util.concurrent.Future,表示这是一个异步的任务,get 方法会同步获取结果

private Long tryAcquire(long waitTime, long leaseTime, TimeUnit unit, long threadId) {return get(tryAcquireAsync0(waitTime, leaseTime, unit, threadId));
}private RFuture<Long> tryAcquireAsync0(long waitTime, long leaseTime, TimeUnit unit, long threadId) {return getServiceManager().execute(() -> tryAcquireAsync(waitTime, leaseTime, unit, threadId));
}

查看 tryAcquireAsync 方法

    private RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {RFuture<Long> ttlRemainingFuture;if (leaseTime > 0) {ttlRemainingFuture = tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);} else {ttlRemainingFuture = tryLockInnerAsync(waitTime, internalLockLeaseTime,TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);}...}

查看 tryLockInnerAsync 方法

    <T> RFuture<T> tryLockInnerAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) {return commandExecutor.syncedEval(getRawName(), LongCodec.INSTANCE, command,"if ((redis.call('exists', KEYS[1]) == 0) " +"or (redis.call('hexists', KEYS[1], ARGV[2]) == 1)) then " +"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +"redis.call('pexpire', KEYS[1], ARGV[1]); " +"return nil; " +"end; " +"return redis.call('pttl', KEYS[1]);",Collections.singletonList(getRawName()), unit.toMillis(leaseTime), getLockName(threadId));}

这是一段加锁的 lua 脚本,用于保证原子性,参数解释如下:

  • KEYS[1] 表示加锁的 key

  • ARGV[1] 表示锁 key 的默认超时时间

  • ARGV[2] 表示加锁的客户端 ID,由 UUID:线程 ID 组成

客户端在第一次加锁完成,会设置一个 key 为客户端 ID,value 为加锁次数的 hash 数据结构:

img

现在知道了内部方法的逻辑,往回倒一步,重点看我加在代码中的注释

    private RFuture<Long> tryAcquireAsync(long waitTime, long leaseTime, TimeUnit unit, long threadId) {RFuture<Long> ttlRemainingFuture;if (leaseTime > 0) {ttlRemainingFuture = tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);} else {ttlRemainingFuture = tryLockInnerAsync(waitTime, internalLockLeaseTime,TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);}// 这里是定义了加锁Lua脚本的异步任务,通过CompletableFuture编排CompletionStage<Long> s = handleNoSync(threadId, ttlRemainingFuture);ttlRemainingFuture = new CompletableFutureWrapper<>(s);// 这个f依赖ttlRemainingFuture的结果,如果入参的leaseTime<=0会触发看门狗机制// 否则按照设置的过期时间来过期CompletionStage<Long> f = ttlRemainingFuture.thenApply(ttlRemaining -> {// lock acquiredif (ttlRemaining == null) {if (leaseTime > 0) {internalLockLeaseTime = unit.toMillis(leaseTime);} else {scheduleExpirationRenewal(threadId);}}return ttlRemaining;});// 返回编排好的CompletableFuturereturn new CompletableFutureWrapper<>(f);}

把 RFuture 返回以后,就到了 get 方法阻塞获取方法这里

private Long tryAcquire(long waitTime, long leaseTime, TimeUnit unit, long threadId) {return get(tryAcquireAsync0(waitTime, leaseTime, unit, threadId));
}private RFuture<Long> tryAcquireAsync0(long waitTime, long leaseTime, TimeUnit unit, long threadId) {return getServiceManager().execute(() -> tryAcquireAsync(waitTime, leaseTime, unit, threadId));
}

最后回到了这里

    private void lock(long leaseTime, TimeUnit unit, boolean interruptibly) throws InterruptedException {long threadId = Thread.currentThread().getId();Long ttl = tryAcquire(-1, leaseTime, unit, threadId);// lock acquiredif (ttl == null) {return;}// 这里的 subscribe 就是 Redis 订阅解锁的 lua 脚本中的 publishCompletableFuture<RedissonLockEntry> future = subscribe(threadId);pubSub.timeout(future);RedissonLockEntry entry;if (interruptibly) {entry = commandExecutor.getInterrupted(future);} else {entry = commandExecutor.get(future);}...}

接着看下面循环获取锁的逻辑

        try {while (true) {// 自旋尝试获取锁ttl = tryAcquire(-1, leaseTime, unit, threadId);// 看Lua脚本,ttl为null说明锁获取到了if (ttl == null) {break;}
​// waiting for messageif (ttl >= 0) {try {// 注意这里的tryAcquire和之前的tryAcquire不是同一个东西,这里是信号量的tryAcquire// entry.getLatch()这里返回的是信号量,释放锁的代码会释放一个许可// 如果没有可用的许可,会一直休眠直到超时时间 ttl msentry.getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);} catch (InterruptedException e) {if (interruptibly) {throw e;}entry.getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);}} else {// 当 key 存在但没有设置剩余生存时间时,pttl返回 -1,会走到这个逻辑// 我感觉正常流程走不到这个逻辑,因为当前线程无非是看到锁存在或者不存在// 看到锁不存在等于加锁成功了,因为Lua脚本是原子性的// 看到锁存在,默认也给了超时时间// 这里就没有设置超时时间,一直等释放锁的许可if (interruptibly) {entry.getLatch().acquire();} else {entry.getLatch().acquireUninterruptibly();}}}} finally {unsubscribe(entry, threadId);}

这里设计的巧妙之处就在于利用了消息订阅、信号量的机制,它不是无休止的盲等机制,也避免了不断的重试,而是检测到锁被释放才去尝试重新获取,这对 CPU 十分的友好

锁互斥机制

此时如果客户端 2 来尝试加锁,同样走进 RedissonLock#lock 方法,会咋样呢?第一个 if 判断会执行 exists myLock,发现 myLock 这个锁 key 已经存在了。接着第二个 if 判断,判断一下,myLock 锁 key 的 hash 数据结构中,对应客户端 2 的 ID 的 key 的 value 为 1,也没有。最终会获取到 pttl myLock 返回的锁 key 的剩余生存时间,进入 while 循环,不停的尝试加锁

可重入锁机制

那如果客户端1都已经持有了这把锁了,结果可重入的加锁会怎么样呢?

img

此时会执行可重入加锁的逻辑,走第二个 if 逻辑,对客户端 1 的加锁次数累加 1,此时 myLock 数据结构变为下面这样:

img

总结 

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/390184.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为路由常见 LSA 类型的产生及作用域和字段详细解读

华为路由常见 LSA 类型的产生及作用域 类型名称描述1路由器 LSA&#xff08;Router LSA&#xff09;每个设备都会产生&#xff0c;描述了设备的链路状态和开销。该 LSA 只能在接口所属的区域内泛洪2网络 LSA&#xff08;Network LSA&#xff09;由 DR 产生&#xff0c;描述该 …

第23集《大佛顶首楞严经》

请大家打开讲义第五十二页&#xff0c;癸八&#xff0c;约外道世谛对简显见性非因缘自然。 本经的修学特色&#xff0c;简单地讲&#xff0c;它是在处理生命的根本问题。就是当我们在行菩萨道的时候&#xff0c;我们会去布施、持戒、忍辱或者是禅定&#xff0c;在整个修学当中…

智慧水务项目(四)django(drf)+angular 18 添加drf_yasg api接口文档

一、说明 文档api接口是必须的 本来准备用coreapi&#xff0c;据说drf_yasg更流弊 二、步骤 1、requirements.txt添加drf-yasg 2、settings.py中添加部分代码 drf_yasg需要与django.contrib.staticfiles配套使用&#xff0c;一般情况下&#xff0c;项目创建都会在INSTALLE…

Javaweb用过滤器写防跳墙功能和退出登录

一、什么是防跳墙功能&#xff1a; 防跳墙功能通常指的是防止用户在未完成认证的情况下直接访问受保护资源的功能。在 Web 开发中&#xff0c;这种功能通常被称为“登录拦截”或“身份验证拦截”。 在 Spring MVC 中&#xff0c;实现这种功能通常使用的是“拦截器”&#xff08…

ASPCMS 漏洞

一、后台修改配置文件拿shell 登录后台后如下点击 点击保存并抓包 将slideTextStatus的值修改为1%25><%25Eval(Request(chr(65)))25><%25 放包&#xff08;连接密码是a&#xff09; 影响文件为 /config/AspCms_Config.asp 访问文件,使用工具连接

【WPF开发】安装环境、新建工程

一、安装环境 在安装VS时候&#xff0c;勾选安装开发环境 如果已安装VS&#xff0c;可以到工具中查看是否有相应环境 二、新建工程 点击“创建新项目” 通过顶部过滤&#xff0c;C#&#xff0c;选择“WPF应用&#xff08;NET.framework&#xff09;”&#xff0c;并点击“下一…

基于Java+SpringBoot+Vue的母婴商城

基于JavaSpringBootVue的母婴商城 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 哈喽兄弟们…

Datawhale AI 夏令营(2024第三期)AI+逻辑推理方向 模型微调学习笔记

如何基于开源大模型进行优化 1. Prompt工程 大模型可能知道问题相关&#xff0c;但是我们问的不清楚。所以需要根据我们的提问&#xff0c;构建出一个比较结构化的、大模型易于理解和分析的提问内容。 在下方的第二个资料里&#xff0c;我才知道有这么多Prompt的构建思路&…

1688中国站获得工厂档案信息 API

公共参数 名称类型必须描述keyString是免费申请调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,item_get,item_search_shop等]cacheString否[yes,no]默认y…

谷粒商城实战笔记-110~114-全文检索-ElasticSearch-查询

文章目录 一&#xff0c;110-全文检索-ElasticSearch-进阶-两种查询方式二&#xff0c;111-全文检索-ElasticSearch-进阶-QueryDSL基本使用&match_all三&#xff0c;112-全文检索-ElasticSearch-进阶-match全文检索四&#xff0c;113-全文检索-ElasticSearch-进阶-match_ph…

STM32F401VET6 PROTEUS8 ILI9341 驱动显示及仿真

stm32cubemx新建工程代码&#xff0c;并生成工程 设置gpio 设置SPI 其他的参考stm32默认设置 然后编辑驱动代码 ili9341.h #ifndef ILI9341_H #define ILI9341_H#include <stdbool.h> #include <stdint.h>#include "glcdfont.h" #include "stm32…

七大云安全威胁及其应对方法

关注公众号网络研究观获取更多内容。 对于任何依赖云来容纳快速增长的服务的企业来说&#xff0c;确保安全都是重中之重。然而&#xff0c;正如大多数云采用者很快意识到的那样&#xff0c;迁移到动态云环境需要新的和更新的安全措施&#xff0c;以确保数据和其他关键资产在整…

idea-springboot后端所有@注释含义汇总-持续更新!

&#xff08;1&#xff09;启动类 ①SpringBootApplication 出现这个代表这个就是整个程序的入口&#xff0c;是运行的开始位置 ②ComponentScan("com.example.dao.impl") 启动时自动扫描制定beans包 &#xff08;2&#xff09;mapper层&#xff08;Dao层&#xf…

反贿赂体系认证:企业诚信经营的护航者

在当今商业环境中&#xff0c;企业不仅要追求经济效益&#xff0c;更要坚守诚信经营的原则。反贿赂体系认证作为现代企业合规管理的重要手段&#xff0c;不仅提升了企业的道德形象&#xff0c;还为其市场竞争力注入了强劲动力。以下是反贿赂体系认证对企业的多方面益处。 首先&…

函数递归超详解!

目录 1.什么是递归调用&#xff1f; 直接调用 间接调用 2.什么是递归&#xff1f; 3.递归举例 3.1求n!的阶乘 3.1.1.非递归法 3.1.2.递归法 3.1.2.1分析和代码实现 3.2顺序打印一个整数的每一位 3.2.1分析和代码实现 4.递归与迭代 4.1举例&#xff1a;斐波那契数列 …

基于JSP的家用电器销售网站

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;JSPJava 工具&#xff1a;ECLIPSE、MySQL数据库管理工具、Tomcat 系统展示 首页 个人中心 商品信…

数据建模标准-基于事实建模

前情提要 数据模型定义 DAMA数据治理体系中将数据模型定义为一种文档形式&#xff0c;数据模型是用来将数据需求从业务传递到IT,以及在IT内部从分析师、建模师和架构师到数据库设计人员和开发人员的主要媒介&#xff1b; 作用 记录数据需求和建模过程中产生的数据定义&…

工业大数据通过哪些方式实现价值?详解实施工业大数据的难点!

在数字化转型的浪潮中&#xff0c;工业大数据正成为推动制造业革新的核心动力。它不仅重塑了生产流程&#xff0c;还为企业带来了前所未有的洞察力和竞争优势。本文将深入探讨工业大数据的类别、价值实现方式&#xff0c;以及在实施过程中存在的挑战和解决方案。 更多详细内容&…

RabbitMQ 入门篇

接上一篇《RabbitMQ-安装篇&#xff08;阿里云主机&#xff09;-CSDN博客》 安装好RabbitMQ后&#xff0c;我们将开始RabbitMQ的使用&#xff0c;根据官网文档RabbitMQ Tutorials | RabbitMQ&#xff0c;我们一步一步的学习。 1. "Hello World!" 这里先说明几个概…

PostgreSQL 15

一、安装前的准备 1、版本信息 操作系统CentOS 7.9.2009PostgreSQL 版本PostgreSQL 15-15.7 2、下载安装包 RPM Chart - PostgreSQL YUM Repositoryhttps://yum.postgresql.org/rpmchart/进入官网&#xff0c;找到相应版本 点击框选内容 依次进入下载页面&#xff0c;下载相…