算法学习day28

一、寻找右区间(二分法)

题意:题目很容易理解 但是转换为二分法有点晦涩

给你一个区间数组 intervals ,其中 intervals[i] = [starti, endi] ,且每个 starti 都 不同 。区间 i 的 右侧区间 可以记作区间 j ,并满足 startj >= endi ,且 startj 最小化 。注意 i 可能等于 j 。

让我们去找一个区间的最小右侧区间,满足条件:右侧区间的start值>该区间的end值,可能存在多个右侧区间,取最小的start值的区间。并把该区间的下标放到数组里面返回。没有记作-

思路:

题目要让我们去找一个区间的最小右侧区间。如何做到最小?

1.首先将每个区间的start值进行排序

2.然后for循环遍历每一个区间,将其end值作为target。

3.然后二分查找第一个>=target的start值的下标。放到res数组中

4.返回res数组

代码:
//将每一个区间的左端点排序 遍历每一个数组的右端点 找到第一个比它大的左端点 然后加入到集合中。如何将左端点排序,使用二维数组
class Solution {public int[] findRightInterval(int[][] intervals) {//第一步 创建sortStart数组 并且排序int[][] sortStart=new int[intervals.length][2];//start值:下标for(int i=0;i<intervals.length;i++){sortStart[i]=new int[]{intervals[i][0],i};}Arrays.sort(sortStart,(a,b)->a[0]-b[0]);//第二步 遍历每一个区间的end 并且将其作为targetint[] res=new int[intervals.length];for(int i=0;i<intervals.length;i++){int target=intervals[i][1];//第i个区间的end值int left=0,right=sortStart.length-1;//第三步 二分查找最小的>=end的start值的下标 放入res数组中while(left<right){int mid=left+(right-left)/2;if(sortStart[mid][0]>=target){right=mid;}else{left=mid+1;}}res[i]=sortStart[left][0]>=intervals[i][1]?sortStart[left][1]:-1;}return res;}
}

二、最长递增子序列(dp+二分法)

解法一:dp动态规划
dp五部曲:

1.dp[i]的含义:以i为结尾的最长递增子序列的长度

2.递推公式:dp[i]=Math.max(dp[i],dp[j]+1);在0->i,如果找到比nums[i]小的数,说明找到了一个递增序列,然后对dp[i]进行更新。

3.初始化dp[i]=1;

4.遍历的顺序:双层for循环,i从1开始,j从0开始直j<i;

代码:
class Solution {public int lengthOfLIS(int[] nums) {//1.dp[i]:以i结尾的最长递增子序列的长度int[] dp=new int[nums.length];Arrays.fill(dp,1);int max=1;for(int i=1;i<nums.length;i++){for(int j=0;j<i;j++){if(nums[j]<nums[i]){dp[i]=Math.max(dp[i],dp[j]+1);}}max=Math.max(max,dp[i]);}return max;}
}
解法二:辅助数组+二分法
思路:

遍历数组,如果遇到的数字是大于尾部元素的,直接放到尾部元素后面,使得递增序列变大;

如果遇到的数字是小于尾部元素的,为了使递增的速度最慢,就要将该元素放到最合适的地方.

那么这个最合适的地方如何去寻找? 当然我们可以利用辅助数组单调递增的规律,使用二分查找法去寻找最合适的地方。

代码:
class Solution {public int lengthOfLIS(int[] nums) {//1.定义辅助数组int[] sortNums=new int[nums.length];int size=1;sortNums[0]=nums[0];for(int i=0;i<nums.length;i++){//如果大于的话 直接放到sortNums的后边if(nums[i]>sortNums[size-1]){sortNums[size++]=nums[i];}else{//如果小于的话 我们就要去找合适的位置int target=nums[i];int left=0,right=size-1;while(left<=right){int mid=left+(right-left)/2;if(sortNums[mid]>=target){right=mid-1;}else{left=mid+1;}}sortNums[right+1]=nums[i];}}return size;}
}

三、寻找峰值

峰值元素是指其值严格大于左右相邻值的元素。

给你一个整数数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。你可以假设 nums[-1] = nums[n] = -∞ 。

因为nums[-1]=nums[n]=-∞;因此可以推断出:

nums[i]<nums[i+1]:那么后面一定存在一个峰值;

nums[i]>=nums[i+1];那么前面一定存在一个峰值;

思路:

那么就根据推断出的规律来进行二分查找:如果nums[mid]>=nums[mid+1] left=mid+1;

nums[mid]<nums[mid+1] right=mid;

代码:
class Solution {public int findPeakElement(int[] nums) {if(nums.length==1)return 0;int left=0,right=nums.length-1;while(left<right){int mid=left+(right-left)/2;if(nums[mid]>=nums[mid+1]){right=mid;}else{left=mid+1;}}return left;}
}

四、找到k个最接近的元素

题意:

给定一个 排序好 的数组 arr ,两个整数 k 和 x ,从数组中找到最靠近 x(两数之差最小)的 k 个数。返回的结果必须要是按升序排好的。

输入:arr = [1,2,3,4,5], x = 3, k = 4
输出:[1,2,3,4] 相同距离的话 加入较小的
解法一:双指针删除法
思路:

逆向思维,在数组中删除(size-k)个离x最远的数字。可以使用双指针(left,right)向x靠近的同时不断删除元素。

比如在1 2 3 4 5中寻找4个最靠近3的数。

left指向1,right指向5。和3的距离都为2,将5删除。剩余四个数字 4==k。那么加入到集合中返回。

代码:
class Solution {public List<Integer> findClosestElements(int[] arr, int k, int x) {// 双指针删除法List<Integer> res = new ArrayList<>();int number = arr.length;int left = 0;int right = number - 1;int count = 0;while (left <= right) {if (count == number - k) {for (int i = left; i <= right; i++) {res.add(arr[i]);}}int diff1 = Math.abs(x - arr[left]);int diff2 = Math.abs(arr[right] - x);if (diff1 <= diff2)right--;elseleft++;count++;// 已经删除的数字}return res;}
}

五、俄罗斯套娃问题(最长上升子序列的二维版)

你一个二维整数数组 envelopes ,其中 envelopes[i] = [wi, hi] ,表示第 i 个信封的宽度和高度。当另一个信封的宽度和高度都比这个信封大的时候,这个信封就可以放进另一个信封里,如同俄罗斯套娃一样。

解法一:动态规划(超时)
解法二:贪心+二分查找
思路:

当只有宽和高都比上一个信封大的时候,才能实现套娃。

我们可以先对宽度进行升序排列,确认了宽度之后,就变成一维的求最长上升子序列了

如何求最大长度的高度序列。使用贪心算法:每次我们都希望放在末尾的值是一个符合条件并且尽可能小的数字,这样我们的长度最长的概率就最大。(因此当我们遇到heights[i]<tails[size]的时候,我们需要将heights[i]放到合适的位置,但是heights所对应宽度是可能相等的。在相等的时候,我们应该按照降序排列,这样在更新下一个的时候就会把它刷掉)。

举个例子理解一下:假如按照升序排列后为:(5,5),(6,6),(7,2)(7,1)(8,3),(9,4)。

1.envelopes[i][1]=5, 集合为空,tails[0]=5 size=1;

2.envelopes[i][1]=6,  6大于5,tails[1]=6,size=2;

3.envelopes[i][1]=2,  2小于6,给2寻找合适的位置,2<5。因此tails[0]=2;

4.envelopes[i][1]=1, 1小于6,给1寻找合适的位置,1<2,因此tails[0]=1;

5.envelopes[i][1]=3,3小于6,给3寻找合适的位置,3<6,因此tails[1]=3;

6.envelopes[i][1]=4,4大于3,因此tails[2]=4;size=3

寻找合适的位置是根据二分搜索法进行寻找。

代码:
class Solution {public int maxEnvelopes(int[][] envelopes) {if(envelopes.length==0)return 0;;// 对信封的宽度排序Arrays.sort(envelopes,new Comparator<int[]>(){public int compare(int[] a,int[] b){return a[0]==b[0]?b[1]-a[1]:a[0]-b[0];}});int maxSize=1;int size=1;int[] tails=new int[envelopes.length];tails[0]=envelopes[0][1];for(int i=1;i<envelopes.length;i++){if(envelopes[i][1]>tails[size-1]){tails[size++]=envelopes[i][1];}else{int left=0,right=size-1;int target=envelopes[i][1];while(left<=right){int mid=left+(right-left)/2;if(tails[mid]>=target)right=mid-1;else left=mid+1;}tails[right+1]=target;}}return size;}
}

六、寻找旋转排序数组中的最小值(要求时间复杂度为O(logN))

思路:二分法

旋转之前,是一个升序数组;旋转之后,会变成两段升序数组。

旋转时,小数往后走,大数旋转到前面来。分情况:

1.起始点在到达中间之前,(右边部分一定处于升序),nums[mid]的值一定是小于nums[right]的,此时起始点一定在mid左边(包括mid)

2.起始点到达中间之后大数占领起始点之前的区域,nums[mid]的值一定是大于nums[right]的,此时起始点一定是在右半部分的。(反证一下,如果起始点在左部分的话,那么起始点的右边一定是升序的,那么nums[mid]一定小于nums[right])

所以

1.当nums[mid]>nums[right],起始点一定在右边,更新左边界left=mid+1;

2.当nums[mid]<=nums[right],起始点一定在左边,更新有边界right=mid;

代码:
class Solution {public int findMin(int[] nums) {int size=nums.length;int left=0,right=size-1;while(left<right){int mid=left+(right-left)/2;if(nums[mid]<nums[right]){right=mid;}else{left=mid+1;}}return nums[left];}
}

七、搜索旋转排序数组

在传递给函数之前,nums 在预先未知的某个下标 k0 <= k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]](下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7] 在下标 3 处经旋转后可能变为 [4,5,6,7,0,1,2] 。

给你 旋转后 的数组 nums 和一个整数 target ,如果 nums 中存在这个目标值 target ,则返回它的下标,否则返回 -1 。

思路:

将一个排序好的数组旋转,变成两段升序序列(也可能是一段 就是原始的)。然后找到元素的起始点。两种情况:

1.如果起始点==0,说明并没有进行旋转,还是原始的数组。

2.如果起始点>0,说明进行了旋转,在两段序列中进行查找target就可以。

代码:
class Solution {public int search(int[] nums, int target) {if (nums.length == 1 && nums[0] == target)return 0;// 首先找到起始点 找到起始点之后 两段升序找targetint left = 0, right = nums.length - 1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] <= nums[right]) {// 说明mid一定在左半边right = mid;} else {left = mid + 1;}}// left就是起始的位置int res1 = 0;int res2 = 0;if (left == 0)return binarySearch(nums, 0, nums.length - 1, target);else {res1 = binarySearch(nums, 0, left - 1, target);res2 = binarySearch(nums, left, nums.length - 1, target);}return res1 == -1 ? res2 : res1;}public int binarySearch(int[] nums, int left, int right, int target) {int index = -1;while (left < right) {int mid = left + (right - left) / 2;if (nums[mid] > target) {right = mid;} else if (nums[mid] < target) {left = mid + 1;} else {return mid;}}return nums[left]==target?left:index;}
}

八、搜索二维矩阵II

编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

  • 每行的元素从左到右升序排列。
  • 每列的元素从上到下升序排列。

思路:

如果从左上角或者右下角开始寻找的话,不具有区别度。

如果从右上角或者左下角寻找的话:

1.右上角:左边变小,下边变大

2.左下角:上边变小,右边变大

代码:
class Solution {public boolean searchMatrix(int[][] matrix, int target) {//从右上角出发int rol=matrix.length;int cow=matrix[0].length;int x=0,y=cow-1;while(x<rol&&y>=0){if(matrix[x][y]<target){x++;}else if(matrix[x][y]>target){y--;}else{return true;}}return false;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/390927.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV||超详细的灰度变换和直方图修正

一、点运算 概念&#xff1a;点运算&#xff08;也称为像素级运算或单像素操作&#xff09;是指对图像中每一个像素点进行独立、相同的操作&#xff0c;而这些操作不会考虑像素点之间的空间关系。点处理优势也称对比度拉伸、对比度增强或灰度变换等。 目的&#xff1a;点运算…

【EtherCAT】Windows+Visual Studio配置SOEM主站——静态库配置+部署

目录 一、准备工作 1. Visual Studio 2022 2. Npcap 1.79 3. SOEM源码 二、静态库配置 1. 修改SOEM源码配置 2. 编译SOEM源码 3. 测试 三、静态库部署 1. 新建Visual Studio工程 2. 创建文件夹 3. 创建主函数 4. 复制静态库 5. 复制头文件 6. 配置头文件…

链接、装载和库——1 简介

前言 关于个人的读书笔记 第一章 温故而知新 1.1 从hello&#xff0c;world说起 ​计算机在执行hello&#xff0c;world的时候发生了什么&#xff1f; 1.2 万变不离其宗 ​在计算机多如牛毛的硬件设备中。有三个部件最为关键&#xff0c;它们分别是 CPU、内存和 I/O 控制芯…

一次多波束和浅地层处理的经历—信标机出问题?

最近处理多波束和浅地层时&#xff0c;一个从来没有过的问题出现了。 多波束数据(.pds)是由PDS2000采集的&#xff0c;使用设备型号为T50P。浅地层数据(.raw)是有SESWIN采集的&#xff0c;使用设备型号为SES2000 Standard。 1、多波束处理 多波束数据采用CARIS11.3处理的。船…

开源LivePortrait,快速实现表情包自定义

最近可灵AI很火&#xff0c;看到网上生成的效果也很赞啊&#xff0c;之前发现快手可灵开源了LivePortrait&#xff0c;今天去玩了一下&#xff0c;很有意思。 比如下图官方展示效果&#xff1a; 这些图片开始自带表情了&#xff0c;主要就是通过LivePortrait来实现。 LivePor…

[E二叉树] lc572. 另一棵树的子树(dfs+前中序判断+树哈希+树上KMP+好题)

文章目录 1. 题目来源2. 题目解析 1. 题目来源 链接&#xff1a;572. 另一棵树的子树 2. 题目解析 看到这个题目就感觉不简单&#xff0c;因为写了写 dfs 版本的&#xff0c;发现好像不太会… 还是简单粗暴一点&#xff0c;直接搞一个 前序中序&#xff0c;进行判断即可。我…

【PyTorch】神经风格迁移项目

神经风格迁移中&#xff0c;取一个内容图像和一个风格图像&#xff0c;综合内容图像的内容和风格图像的艺术风格生成新的图像。 目录 准备数据 处理数据 神经风格迁移模型 加载预训练模型 定义损失函数 定义优化器 运行模型 准备数据 创建data文件夹&#xff0c;放入…

数据恢复软件:电脑丢失文件,及时使用数据恢复软件恢复!

数据恢复软件什么时候会用到&#xff1f; 答&#xff1a;如果真的不小心删除文件&#xff0c;清空回收站&#xff0c;电脑重装系统等情况发生&#xff0c;我们要懂的及时停止使用电子设备&#xff0c;使用可靠的数据恢复软件&#xff0c;帮助我们恢复这些电子设备的数据&#…

二进制搭建 Kubernetes v1.20(上)

目录 一、操作系统初始化配置 二、升级Liunx内核 三、部署docker引擎 四、部署etcd集群 五、部署Master组件 六、部署Worker Node组件 hostnameip需要部署k8s集群master0120.0.0.100kube-apiserver kube-controller-manager kube-scheduler etcdk8s集群master0220.0.0.1…

CookieMaker工作室合作开发C++项目十一:拟态病毒

&#xff08;注&#xff1a;本文章使用了“无标题技术”&#xff09; 一天&#xff0c;我和几个同事&#xff0c;平台出了点BUG&#xff0c;居然给我刷出了千年杀&#xff0c;同事看得瑕疵欲裂&#xff0c;发誓要将我挫骨扬灰—— &#xff08;游戏入口&#xff1a;和平精英31.…

【数据脱敏】数据交换平台数据脱敏建设方案

1 概述 1.1 数据脱敏定义 1.2 数据脱敏原则 1.2.1基本原则 1.2.2技术原则 1.2.3管理原则 1.3 数据脱敏常用方法 3.1.1泛化技术 3.1.2抑制技术 3.1.3扰乱技术 3.1.4有损技术 1.4 数据脱敏全生命周期 2 制定数据脱敏规程 3 发现敏感数据 4 定义脱敏规则 5 执…

[Unity] ShaderGraph实现DeBuff污染 溶解叠加效果

本篇是在之前的基础上&#xff0c;继续做的功能衍生。 [Unity] ShaderGraph实现Sprite消散及受击变色 完整连连看如下所示&#xff1a;

TypeError: ‘float’ object is not iterable 深度解析

TypeError: ‘float’ object is not iterable 深度解析与实战指南 在Python编程中&#xff0c;TypeError: float object is not iterable是一个常见的错误&#xff0c;通常发生在尝试对浮点数&#xff08;float&#xff09;进行迭代操作时。这个错误表明代码中存在类型使用不…

C基础项目(学生成绩管理系统)

目录 一、项目要求 二、完整代码实例 三、分文件编写代码实例 一、项目要求 1.系统运行&#xff0c;打开如下界面。列出系统帮助菜单&#xff08;即命令菜单&#xff09;&#xff0c;提示输入命令 2.开始时还没有录入成绩&#xff0c;所以输入命令 L 也无法列出成绩。应提…

嵌入式Linux系统中pinictrl框架基本实现

1. 回顾Pinctrl的三大作用 记住pinctrl的三大作用,有助于理解所涉及的数据结构: * 引脚枚举与命名(Enumerating and naming) * 单个引脚 * 各组引脚 * 引脚复用(Multiplexing):比如用作GPIO、I2C或其他功能 * 引脚配置(Configuration):比如上拉、下拉、open drain、驱…

从零入门 AI for Science(AI+药物) 笔记 #Datawhale AI 夏令营

&#x1f496;使用平台 我的Notebook 魔搭社区 https://modelscope.cn/my/mynotebook/preset . 魔搭高峰期打不开Task3又换回飞桨了 吧torch 架构换成了 飞桨的paddle 飞桨AI Studio星河社区-人工智能学习与实训社区 https://aistudio.baidu.com/projectdetail/8191835?cont…

Python数据分析案例58——热门游戏数据分析及其可视化

案例背景 有哪个男生不喜欢玩游戏呢&#xff1f;就算上了班儿也要研究一下游戏以及热门的游戏。正好这里有个热门的游戏数据集&#xff0c;全球热门游戏数据集来做一下一些可视化的分析。 数据介绍 该文件包含一个数据集&#xff0c;详细说明了多个平台上的各种流行游戏。每个…

基于ThinkPHP开发的校园跑腿社区小程序系统源码,包含前后端代码

基于ThinkPHP开发的校园跑腿社区小程序系统源码&#xff0c;包含前后端代码 最新独立版校园跑腿校园社区小程序系统源码 | 附教程 测试环境&#xff1a;NginxPHP7.2MySQL5.6 多校版本&#xff0c;多模块&#xff0c;适合跑腿&#xff0c;外卖&#xff0c;表白&#xff0c;二…

Java中的5种线程池类型

Java中的5种线程池类型 1. CachedThreadPool &#xff08;有缓冲的线程池&#xff09;2. FixedThreadPool &#xff08;固定大小的线程池&#xff09;3. ScheduledThreadPool&#xff08;计划线程池&#xff09;4. SingleThreadExecutor &#xff08;单线程线程池&#xff09;…

使用 Streamlit 和 Python 构建 Web 应用程序

一.介绍 在本文中&#xff0c;我们将探讨如何使用 Streamlit 构建一个简单的 Web 应用程序。Streamlit 是一个功能强大的 Python 库&#xff0c;允许开发人员快速轻松地创建交互式 Web 应用程序。Streamlit 旨在让 Python 开发人员尽可能轻松地创建 Web 应用程序。以下是一些主…