正点原子imx6ull-mini-Linux驱动之Linux I2C 驱动实验(21)

I2C 是很常用的一个串行通信接口,用于连接各种外设、传感器等器件,在裸机篇已经对 I.MX6U 的 I2C 接口做了详细的讲解。本章我们来学习一下如何在 Linux 下开发 I2C 接口器件 驱动,重点是学习 Linux 下的 I2C 驱动框架,按照指定的框架去编写 I2C 设备驱动。本章同样 以 I.MX6U-ALPHA 开发板上的 AP3216C 这个三合一环境光传感器为例,通过 AP3216C 讲解 一下如何编写 Linux 下的 I2C 设备驱动程序。

1:Linux I2C 驱动框架简介

回想一下我们在裸机篇中是怎么编写 AP3216C 驱动的,我们编写了四个文件:bsp_i2c.c、 bsp_i2c.h、bsp_ap3216c.c 和 bsp_ap3216c.h。其中前两个是 I.MX6U 的 IIC 接口驱动,后两个文 件是 AP3216C 这个 I2C 设备驱动文件。相当于有两部分驱动:

①、I2C 主机驱动。

②、I2C 设备驱动。

对于 I2C 主机驱动,一旦编写完成就不需要再做修改,其他的 I2C 设备直接调用主机驱动 提供的 API 函数完成读写操作即可。这个正好符合 Linux 的驱动分离与分层的思想,因此 Linux 内核也将 I2C 驱动分为两部分:

①、I2C 总线驱动,I2C 总线驱动就是 SOC 的 I2C 控制器驱动,也叫做 I2C 适配器驱动。

②、I2C 设备驱动,I2C 设备驱动就是针对具体的 I2C 设备而编写的驱动。

1.1:I2C 总线驱动

首先来看一下 I2C 总线,在讲 platform 的时候就说过,platform 是虚拟出来的一条总线, 目的是为了实现总线、设备、驱动框架。对于 I2C 而言,不需要虚拟出一条总线,直接使用 I2C 总线即可。I2C 总线驱动重点是 I2C 适配器(也就是 SOC 的 I2C 接口控制器)驱动,这里要用到 两个重要的数据结构:i2c_adapter 和 i2c_algorithm,Linux 内核将 SOC 的 I2C 适配器(控制器) 抽象成 i2c_adapter,i2c_adapter 结构体定义在 include/linux/i2c.h 文件中,结构体内容如下:

498 struct i2c_adapter {
499 struct module *owner;
500 unsigned int class; /* classes to allow probing for */
501 const struct i2c_algorithm *algo; /* 总线访问算法 */
502 void *algo_data;
503
504 /* data fields that are valid for all devices */
505 struct rt_mutex bus_lock;
506
507 int timeout; /* in jiffies */
508 int retries;
509 struct device dev; /* the adapter device */
510
511 int nr;
512 char name[48];
513 struct completion dev_released;
514
515 struct mutex userspace_clients_lock;
516 struct list_head userspace_clients;
517
518 struct i2c_bus_recovery_info *bus_recovery_info;
519 const struct i2c_adapter_quirks *quirks;
520 };

第 501 行,i2c_algorithm 类型的指针变量 algo,对于一个 I2C 适配器,肯定要对外提供读 写 API 函数,设备驱动程序可以使用这些 API 函数来完成读写操作。i2c_algorithm 就是 I2C 适 配器与 IIC 设备进行通信的方法。 i2c_algorithm 结构体定义在 include/linux/i2c.h 文件中,内容如下(删除条件编译):

391 struct i2c_algorithm {
......
398 int (*master_xfer)(struct i2c_adapter *adap,
struct i2c_msg *msgs,
399 int num);
400 int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
401 unsigned short flags, char read_write,
402 u8 command, int size, union i2c_smbus_data *data);
403
404 /* To determine what the adapter supports */
405 u32 (*functionality) (struct i2c_adapter *);
......
411 };

第 398 行,master_xfer 就是 I2C 适配器的传输函数,可以通过此函数来完成与 IIC 设备之 间的通信。

第 400 行,smbus_xfer 就是 SMBUS 总线的传输函数。 综上所述,I2C 总线驱动,或者说 I2C 适配器驱动的主要工作就是初始化 i2c_adapter 结构 体变量,然后设置 i2c_algorithm 中的 master_xfer 函数。完成以后通过 i2c_add_numbered_adapter 或 i2c_add_adapter 这两个函数向系统注册设置好的 i2c_adapter,这两个函数的原型如下:

int i2c_add_adapter(struct i2c_adapter *adapter)
int i2c_add_numbered_adapter(struct i2c_adapter *adap)

这两个函数的区别在于 i2c_add_adapter 使用动态的总线号而 i2c_add_numbered_adapter 使用静态总线号。函数参数和返回值含义如下:

adapter 或 adap:要添加到 Linux 内核中的 i2c_adapter,也就是 I2C 适配器。

返回值:0,成功;负值,失败。

如果要删除 I2C 适配器的话使用 i2c_del_adapter 函数即可,函数原型如下:

void i2c_del_adapter(struct i2c_adapter * adap)

函数参数和返回值含义如下:

adap:要删除的 I2C 适配器。

返回值:无。

关于 I2C 的总线(控制器或适配器)驱动就讲解到这里,一般 SOC 的 I2C 总线驱动都是由半 导体厂商编写的,比如 I.MX6U 的 I2C 适配器驱动 NXP 已经编写好了,这个不需要用户去编 写。因此 I2C 总线驱动对我们这些 SOC 使用者来说是被屏蔽掉的,我们只要专注于 I2C 设备驱 动即可。除非你是在半导体公司上班,工作内容就是写 I2C 适配器驱动。

1.2:I2C 设备驱动

I2C 设备驱动重点关注两个数据结构:i2c_client 和 i2c_driver,根据总线、设备和驱动模型, I2C 总线上一小节已经讲了。还剩下设备和驱动,i2c_client 就是描述设备信息的,i2c_driver 描述驱动内容,类似于 platform_driver。

1.2.1:i2c_client 结构体

i2c_client 结构体定义在 include/linux/i2c.h 文件中,内容如下:

217 struct i2c_client {
218 unsigned short flags; /* 标志 */
219 unsigned short addr; /* 芯片地址,7 位,存在低 7 位*/
......
222 char name[I2C_NAME_SIZE]; /* 名字 */
223 struct i2c_adapter *adapter; /* 对应的 I2C 适配器 */
224 struct device dev; /* 设备结构体 */
225 int irq; /* 中断 */
226 struct list_head detected;
......
230 };

一个设备对应一个 i2c_client,每检测到一个 I2C 设备就会给这个 I2C 设备分配一个 i2c_client。

1.2.2:i2c_driver 结构体 

i2c_driver 类似 platform_driver,是我们编写 I2C 设备驱动重点要处理的内容,i2c_driver 结 构体定义在 include/linux/i2c.h 文件中,内容如下:

161 struct i2c_driver {
162 unsigned int class;
163
164 /* Notifies the driver that a new bus has appeared. You should 
165 * avoid using this, it will be removed in a near future.
166 */
167 int (*attach_adapter)(struct i2c_adapter *) __deprecated;
168
169 /* Standard driver model interfaces */
170 int (*probe)(struct i2c_client *, const struct i2c_device_id *);
171 int (*remove)(struct i2c_client *);
172
173 /* driver model interfaces that don't relate to enumeration */
174 void (*shutdown)(struct i2c_client *);
175
176 /* Alert callback, for example for the SMBus alert protocol.
177 * The format and meaning of the data value depends on the 
178 * protocol.For the SMBus alert protocol, there is a single bit 
179 * of data passed as the alert response's low bit ("event 
180 flag"). */
181 void (*alert)(struct i2c_client *, unsigned int data);
182
183 /* a ioctl like command that can be used to perform specific 
184 * functions with the device.
185 */
186 int (*command)(struct i2c_client *client, unsigned int cmd,
void *arg);
187
188 struct device_driver driver;
189 const struct i2c_device_id *id_table;
190
191 /* Device detection callback for automatic device creation */
192 int (*detect)(struct i2c_client *, struct i2c_board_info *);
193 const unsigned short *address_list;
194 struct list_head clients;
195 };

第 170 行,当 I2C 设备和驱动匹配成功以后 probe 函数就会执行,和 platform 驱动一样。

第 188 行,device_driver 驱动结构体,如果使用设备树的话,需要设置 device_driver 的 of_match_table 成员变量,也就是驱动的兼容(compatible)属性。

第 189 行,id_table 是传统的、未使用设备树的设备匹配 ID 表。 对于我们 I2C 设备驱动编写人来说,重点工作就是构建 i2c_driver,构建完成以后需要向 Linux 内核注册这个 i2c_driver。i2c_driver 注册函数为 int i2c_register_driver,此函数原型如下:

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)

函数参数和返回值含义如下:

owner:一般为 THIS_MODULE。

driver:要注册的 i2c_driver。

返回值:0,成功;负值,失败。

另外 i2c_add_driver 也常常用于注册 i2c_driver,i2c_add_driver 是一个宏,定义如下:

587 #define i2c_add_driver(driver) \
588 i2c_register_driver(THIS_MODULE, driver)

i2c_add_driver 就是对 i2c_register_driver 做了一个简单的封装,只有一个参数,就是要注册 的 i2c_driver。 注销 I2C 设备驱动的时候需要将前面注册的 i2c_driver 从 Linux 内核中注销掉,需要用到 i2c_del_driver 函数,此函数原型如下:

void i2c_del_driver(struct i2c_driver *driver)

函数参数和返回值含义如下:

driver:要注销的 i2c_driver。

返回值:无。

i2c_driver 的注册示例代码如下:

1 /* i2c 驱动的 probe 函数 */
2 static int xxx_probe(struct i2c_client *client,
const struct i2c_device_id *id)
3 {
4 /* 函数具体程序 */
5 return 0;
6 }
7 
8 /* i2c 驱动的 remove 函数 */
9 static int xxx_remove(struct i2c_client *client)
10 {
11 /* 函数具体程序 */
12 return 0;
13 }
14
15 /* 传统匹配方式 ID 列表 */
16 static const struct i2c_device_id xxx_id[] = {
17 {"xxx", 0}, 
18 {}
19 };
20
21 /* 设备树匹配列表 */
22 static const struct of_device_id xxx_of_match[] = {
23 { .compatible = "xxx" },
24 { /* Sentinel */ }
25 };
26
27 /* i2c 驱动结构体 */
28 static struct i2c_driver xxx_driver = {
29 .probe = xxx_probe,
30 .remove = xxx_remove,
31 .driver = {
32 .owner = THIS_MODULE,
33 .name = "xxx",
34 .of_match_table = xxx_of_match,
35 },
36 .id_table = xxx_id,
37 };
38 
39 /* 驱动入口函数 */
40 static int __init xxx_init(void)
41 {
42 int ret = 0;
43
44 ret = i2c_add_driver(&xxx_driver);
45 return ret;
46 }
47
48 /* 驱动出口函数 */
49 static void __exit xxx_exit(void)
50 {
51 i2c_del_driver(&xxx_driver);
52 }
53
54 module_init(xxx_init);
55 module_exit(xxx_exit);

第 16~19 行,i2c_device_id,无设备树的时候匹配 ID 表。

第 22~25 行,of_device_id,设备树所使用的匹配表。

第 28~37 行,i2c_driver,当 I2C 设备和 I2C 驱动匹配成功以后 probe 函数就会执行,这些 和 platform 驱动一样,probe 函数里面基本就是标准的字符设备驱动那一套了。

1.3:I2C 设备和驱动匹配过程

I2C 设备和驱动的匹配过程是由 I2C 核心来完成的,drivers/i2c/i2c-core.c 就是 I2C 的核心 部分,I2C 核心提供了一些与具体硬件无关的 API 函数,比如前面讲过的:

1.3.1:i2c_adapter 注册/注销函数

int i2c_add_adapter(struct i2c_adapter *adapter)
int i2c_add_numbered_adapter(struct i2c_adapter *adap)
void i2c_del_adapter(struct i2c_adapter * adap)

1.3.2:i2c_driver 注册/注销函数

int i2c_register_driver(struct module *owner, struct i2c_driver *driver)
int i2c_add_driver (struct i2c_driver *driver)
void i2c_del_driver(struct i2c_driver *driver)

设备和驱动的匹配过程也是由 I2C 总线完成的,I2C 总线的数据结构为 i2c_bus_type,定义 在 drivers/i2c/i2c-core.c 文件,i2c_bus_type 内容如下:

736 struct bus_type i2c_bus_type = {
737 .name = "i2c",
738 .match = i2c_device_match,
739 .probe = i2c_device_probe,
740 .remove = i2c_device_remove,
741 .shutdown = i2c_device_shutdown,
742 };

.match 就是 I2C 总线的设备和驱动匹配函数,在这里就是 i2c_device_match 这个函数,此 函数内容如下:

457 static int i2c_device_match(struct device *dev, struct
device_driver *drv)
458 {
459 struct i2c_client *client = i2c_verify_client(dev);
460 struct i2c_driver *driver;
461
462 if (!client)
463 return 0;
464
465 /* Attempt an OF style match */
466 if (of_driver_match_device(dev, drv))
467 return 1;
468
469 /* Then ACPI style match */
470 if (acpi_driver_match_device(dev, drv))
471 return 1;
472
473 driver = to_i2c_driver(drv);
474 /* match on an id table if there is one */
475 if (driver->id_table)
476 return i2c_match_id(driver->id_table, client) != NULL;
477
478 return 0;
479 }

第 466 行,of_driver_match_device 函数用于完成设备树设备和驱动匹配。比较 I2C 设备节 点的 compatible 属性和 of_device_id 中的 compatible 属性是否相等,如果相当的话就表示 I2C 设备和驱动匹配。

第 470 行,acpi_driver_match_device 函数用于 ACPI 形式的匹配。

第 476 行,i2c_match_id 函数用于传统的、无设备树的 I2C 设备和驱动匹配过程。比较 I2C 设备名字和 i2c_device_id 的 name 字段是否相等,相等的话就说明 I2C 设备和驱动匹配。

2:I.MX6U 的 I2C 适配器驱动分析

上一小节我们讲解了 Linux 下的 I2C 驱动框架,重点分为 I2C 适配器驱动和 I2C 设备驱动, 其中 I2C 适配器驱动就是 SOC 的 I2C 控制器驱动。I2C 设备驱动是需要用户根据不同的 I2C 设 备去编写,而 I2C 适配器驱动一般都是 SOC 厂商去编写的,比如 NXP 就编写好了 I.MX6U 的 I2C 适配器驱动。在 imx6ull.dtsi 文件中找到 I.MX6U 的 I2C1 控制器节点,节点内容如下所示:

1 i2c1: i2c@021a0000 {
2 #address-cells = <1>;
3 #size-cells = <0>;
4 compatible = "fsl,imx6ul-i2c", "fsl,imx21-i2c";
5 reg = <0x021a0000 0x4000>;
6 interrupts = <GIC_SPI 36 IRQ_TYPE_LEVEL_HIGH>;
7 clocks = <&clks IMX6UL_CLK_I2C1>;
8 status = "disabled";
9 };

重点关注 i2c1 节点的 compatible 属性值,因为通过 compatible 属性值可以在 Linux 源码里 面找到对应的驱动文件。这里i2c1节点的compatible属性值有两个:“fsl,imx6ul-i2c”和“fsl,imx21- i2c”,在 Linux 源码中搜索这两个字符串即可找到对应的驱动文件。I.MX6U 的 I2C 适配器驱动 驱动文件为 drivers/i2c/busses/i2c-imx.c,在此文件中有如下内容:

244 static struct platform_device_id imx_i2c_devtype[] = {
245 {
246 .name = "imx1-i2c",
247 .driver_data = (kernel_ulong_t)&imx1_i2c_hwdata,
248 }, {
249 .name = "imx21-i2c",
250 .driver_data = (kernel_ulong_t)&imx21_i2c_hwdata,
251 }, {
252 /* sentinel */
253 }
254 };
255 MODULE_DEVICE_TABLE(platform, imx_i2c_devtype);
256
257 static const struct of_device_id i2c_imx_dt_ids[] = {
258 { .compatible = "fsl,imx1-i2c", .data = &imx1_i2c_hwdata, },
259 { .compatible = "fsl,imx21-i2c", .data = &imx21_i2c_hwdata, },
260 { .compatible = "fsl,vf610-i2c", .data = &vf610_i2c_hwdata, },
261 { /* sentinel */ }
262 };
263 MODULE_DEVICE_TABLE(of, i2c_imx_dt_ids);
......
1119 static struct platform_driver i2c_imx_driver = {
1120 .probe = i2c_imx_probe,
1121 .remove = i2c_imx_remove,
1122 .driver = {
1123 .name = DRIVER_NAME,
1124 .owner = THIS_MODULE,
1125 .of_match_table = i2c_imx_dt_ids,
1126 .pm = IMX_I2C_PM,
1127 },
1128 .id_table = imx_i2c_devtype,
1129 };
1130
1131 static int __init i2c_adap_imx_init(void)
1132 {
1133 return platform_driver_register(&i2c_imx_driver);
1134 }
1135 subsys_initcall(i2c_adap_imx_init);
1136
1137 static void __exit i2c_adap_imx_exit(void)
1138 {
1139 platform_driver_unregister(&i2c_imx_driver);
1140 }
1141 module_exit(i2c_adap_imx_exit);

从示例代码 61.2.2 可以看出,I.MX6U 的 I2C 适配器驱动是个标准的 platform 驱动,由此 可以看出,虽然 I2C 总线为别的设备提供了一种总线驱动框架,但是 I2C 适配器却是 platform 驱动。就像你的部门老大是你的领导,你是他的下属,但是放到整个公司,你的部门老大却也 是老板的下属。

第 259 行,“fsl,imx21-i2c”属性值,设备树中 i2c1 节点的 compatible 属性值就是与此匹配 上的。因此 i2c-imx.c 文件就是 I.MX6U 的 I2C 适配器驱动文件。

第 1120 行,当设备和驱动匹配成功以后 i2c_imx_probe 函数就会执行,i2c_imx_probe 函数 就会完成 I2C 适配器初始化工作。 i2c_imx_probe 函数内容如下所示(有省略):

971 static int i2c_imx_probe(struct platform_device *pdev)
972 {
973 const struct of_device_id *of_id =
974 of_match_device(i2c_imx_dt_ids, &pdev->dev);
975 struct imx_i2c_struct *i2c_imx;
976 struct resource *res;
977 struct imxi2c_platform_data *pdata =
dev_get_platdata(&pdev->dev);
978 void __iomem *base;
979 int irq, ret;
980 dma_addr_t phy_addr;
981 
982 dev_dbg(&pdev->dev, "<%s>\n", __func__);
983 
984 irq = platform_get_irq(pdev, 0);
......
990 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
991 base = devm_ioremap_resource(&pdev->dev, res);
992 if (IS_ERR(base))
993 return PTR_ERR(base);
994 
995 phy_addr = (dma_addr_t)res->start;
996 i2c_imx = devm_kzalloc(&pdev->dev, sizeof(*i2c_imx),
GFP_KERNEL);
997 if (!i2c_imx)
998 return -ENOMEM;
999 
1000 if (of_id)
1001 i2c_imx->hwdata = of_id->data;
1002 else
1003 i2c_imx->hwdata = (struct imx_i2c_hwdata *)
1004 platform_get_device_id(pdev)->driver_data;
1005
1006 /* Setup i2c_imx driver structure */
1007 strlcpy(i2c_imx->adapter.name, pdev->name,
sizeof(i2c_imx->adapter.name));
1008 i2c_imx->adapter.owner = THIS_MODULE;
1009 i2c_imx->adapter.algo = &i2c_imx_algo;
1010 i2c_imx->adapter.dev.parent = &pdev->dev;
1011 i2c_imx->adapter.nr = pdev->id;
1012 i2c_imx->adapter.dev.of_node = pdev->dev.of_node;
1013 i2c_imx->base = base;
1014
1015 /* Get I2C clock */
1016 i2c_imx->clk = devm_clk_get(&pdev->dev, NULL);
......
1022 ret = clk_prepare_enable(i2c_imx->clk);
......
1027 /* Request IRQ */
1028 ret = devm_request_irq(&pdev->dev, irq, i2c_imx_isr,
1029 IRQF_NO_SUSPEND, pdev->name, i2c_imx);
......
1035 /* Init queue */
1036 init_waitqueue_head(&i2c_imx->queue);
1037
1038 /* Set up adapter data */
1039 i2c_set_adapdata(&i2c_imx->adapter, i2c_imx);
1040
1041 /* Set up clock divider */
1042 i2c_imx->bitrate = IMX_I2C_BIT_RATE;
1043 ret = of_property_read_u32(pdev->dev.of_node,
1044 "clock-frequency", &i2c_imx->bitrate);
1045 if (ret < 0 && pdata && pdata->bitrate)
1046 i2c_imx->bitrate = pdata->bitrate;
1047
1048 /* Set up chip registers to defaults */
1049 imx_i2c_write_reg(i2c_imx->hwdata->i2cr_ien_opcode ^ I2CR_IEN,
1050 i2c_imx, IMX_I2C_I2CR);
1051 imx_i2c_write_reg(i2c_imx->hwdata->i2sr_clr_opcode, i2c_imx,
IMX_I2C_I2SR);
1052
1053 /* Add I2C adapter */
1054 ret = i2c_add_numbered_adapter(&i2c_imx->adapter);
1055 if (ret < 0) {
1056 dev_err(&pdev->dev, "registration failed\n");
1057 goto clk_disable;
1058 }
1059
1060 /* Set up platform driver data */
1061 platform_set_drvdata(pdev, i2c_imx);
1062 clk_disable_unprepare(i2c_imx->clk);
......
1070 /* Init DMA config if supported */
1071 i2c_imx_dma_request(i2c_imx, phy_addr);
1072
1073 return 0; /* Return OK */
1074
1075 clk_disable:
1076 clk_disable_unprepare(i2c_imx->clk);
1077 return ret;
1078 }

第 984 行,调用 platform_get_irq 函数获取中断号。

第 990~991 行,调用 platform_get_resource 函数从设备树中获取 I2C1 控制器寄存器物理基 地址,也就是 0X021A0000。获取到寄存器基地址以后使用 devm_ioremap_resource 函数对其进 行内存映射,得到可以在 Linux 内核中使用的虚拟地址。

第 996 行,NXP 使用 imx_i2c_struct 结构体来表示 I.MX 系列 SOC 的 I2C 控制器,这里使 用 devm_kzalloc 函数来申请内存。

第 1008~1013 行,imx_i2c_struct 结构体要有个叫做 adapter 的成员变量,adapter 就是 i2c_adapter,这里初始化i2c_adapter。

第1009行设置i2c_adapter的algo成员变量为i2c_imx_algo, 也就是设置 i2c_algorithm。

第 1028~1029 行,注册 I2C 控制器中断,中断服务函数为 i2c_imx_isr。

第 1042~1044 行,设置 I2C 频率默认为 IMX_I2C_BIT_RATE=100KHz,如果设备树节点设 置了“clock-frequency”属性的话 I2C 频率就使用 clock-frequency 属性值。

第 1049~1051 行,设置 I2C1 控制的 I2CR 和 I2SR 寄存器。

第 1054 行,调用 i2c_add_numbered_adapter 函数向 Linux 内核注册 i2c_adapter。

第 1071 行,申请 DMA,看来 I.MX 的 I2C 适配器驱动采用了 DMA 方式。

i2c_imx_probe 函数主要的工作就是一下两点:

①、初始化 i2c_adapter,设置 i2c_algorithm 为 i2c_imx_algo,最后向 Linux 内核注册 i2c_adapter。

②、初始化 I2C1 控制器的相关寄存器。 i2c_imx_algo 包含 I2C1 适配器与 I2C 设备的通信函数 master_xfer,i2c_imx_algo 结构体定 义如下:

966 static struct i2c_algorithm i2c_imx_algo = {
967 .master_xfer = i2c_imx_xfer,
968 .functionality = i2c_imx_func,
969 };

我们先来看一下. functionality,functionality用于返回此I2C适配器支持什么样的通信协议, 在这里 functionality 就是 i2c_imx_func 函数,i2c_imx_func 函数内容如下:

static u32 i2c_imx_func(struct i2c_adapter *adapter)
{return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
}

重点来看一下 i2c_imx_xfer 函数,因为最终就是通过此函数来完成与 I2C 设备通信的,此 函数内容如下(有省略):

888 static int i2c_imx_xfer(struct i2c_adapter *adapter,
889 struct i2c_msg *msgs, int num)
890 {
891 unsigned int i, temp;
892 int result;
893 bool is_lastmsg = false;
894 struct imx_i2c_struct *i2c_imx = i2c_get_adapdata(adapter);
895
896 dev_dbg(&i2c_imx->adapter.dev, "<%s>\n", __func__);
897
898 /* Start I2C transfer */
899 result = i2c_imx_start(i2c_imx);
900 if (result)
901 goto fail0;
902
903 /* read/write data */
904 for (i = 0; i < num; i++) {
905 if (i == num - 1)
906 is_lastmsg = true;
907
908 if (i) {
909 dev_dbg(&i2c_imx->adapter.dev,
910 "<%s> repeated start\n", __func__);
911 temp = imx_i2c_read_reg(i2c_imx, IMX_I2C_I2CR);
912 temp |= I2CR_RSTA;
913 imx_i2c_write_reg(temp, i2c_imx, IMX_I2C_I2CR);
914 result = i2c_imx_bus_busy(i2c_imx, 1);
915 if (result)
916 goto fail0;
917 }
918 dev_dbg(&i2c_imx->adapter.dev,
919 "<%s> transfer message: %d\n", __func__, i);
920 /* write/read data */
......
938 if (msgs[i].flags & I2C_M_RD)
939 result = i2c_imx_read(i2c_imx, &msgs[i], is_lastmsg);
940 else {
941 if (i2c_imx->dma && msgs[i].len >= DMA_THRESHOLD)
942 result = i2c_imx_dma_write(i2c_imx, &msgs[i]);
943 else
944 result = i2c_imx_write(i2c_imx, &msgs[i]);
945 }
946 if (result)
947 goto fail0;
948 }
949
950 fail0:
951 /* Stop I2C transfer */
952 i2c_imx_stop(i2c_imx);
953
954 dev_dbg(&i2c_imx->adapter.dev, "<%s> exit with: %s: %d\n",
__func__,
955 (result < 0) ? "error" : "success msg",
956 (result < 0) ? result : num);
957 return (result < 0) ? result : num;
958 }

第 899 行,调用 i2c_imx_start 函数开启 I2C 通信。

第 939 行,如果是从 I2C 设备读数据的话就调用 i2c_imx_read 函数。

第 941~945 行,向 I2C 设备写数据,如果要用 DMA 的话就使用 i2c_imx_dma_write 函数来 完成写数据。如果不使用 DMA 的话就使用 i2c_imx_write 函数完成写数据。

第 952 行,I2C 通信完成以后调用 i2c_imx_stop 函数停止 I2C 通信。 i2c_imx_start、i2c_imx_read、i2c_imx_write 和 i2c_imx_stop 这些函数就是 I2C 寄存器的具 体操作函数,函数内容基本和我们裸机篇中讲的 I2C 驱动一样,这里我们就不详细的分析了, 大家可以对照着第二十六章实验自行分析。

3:I2C 设备驱动编写流程

I2C 适配器驱动 SOC 厂商已经替我们编写好了,我们需要做的就是编写具体的设备驱动, 本小节我们就来学习一下 I2C 设备驱动的详细编写流程。

3.1:I2C 设备信息描述

首先肯定要描述 I2C 设备节点信息,先来看一下没有使用设备树的时候是如何在 BSP 里面 描述 I2C 设备信息的,在未使用设备树的时候需要在 BSP 里面使用 i2c_board_info 结构体来描 述一个具体的 I2C 设备。i2c_board_info 结构体如下:

295 struct i2c_board_info {
296 char type[I2C_NAME_SIZE]; /* I2C 设备名字 */
297 unsigned short flags; /* 标志 */
298 unsigned short addr; /* I2C 器件地址 */
299 void *platform_data; 
300 struct dev_archdata *archdata;
301 struct device_node *of_node;
302 struct fwnode_handle *fwnode;
303 int irq;
304 };

type 和 addr 这两个成员变量是必须要设置的,一个是 I2C 设备的名字,一个是 I2C 设备的 器件地址。打开 arch/arm/mach-imx/mach-mx27_3ds.c 文件,此文件中关于 OV2640 的 I2C 设备 信息描述如下:

392 static struct i2c_board_info mx27_3ds_i2c_camera = {
393 I2C_BOARD_INFO("ov2640", 0x30),
394 };

示例代码 61.3.1.2 中使用 I2C_BOARD_INFO 来完成 mx27_3ds_i2c_camera 的初始化工作, I2C_BOARD_INFO 是一个宏,定义如下:

316 #define I2C_BOARD_INFO(dev_type, dev_addr) \
317 .type = dev_type, .addr = (dev_addr)

可以看出,I2C_BOARD_INFO 宏其实就是设置 i2c_board_info 的 type 和 addr 这两个成员 变量,因此示例代码 61.3.1.2 的主要工作就是设置 I2C 设备名字为 ov2640,ov2640 的器件地 址为 0X30。 大家可以在 Linux 源码里面全局搜索 i2c_board_info,会找到大量以 i2c_board_info 定义的 I2C 设备信息,这些就是未使用设备树的时候 I2C 设备的描述方式,当采用了设备树以后就不 会再使用 i2c_board_info 来描述 I2C 设备了。

3.2:使用设备树的时候

使用设备树的时候 I2C 设备信息通过创建相应的节点就行了,比如 NXP 官方的 EVK 开发 板在 I2C1 上接了 mag3110 这个磁力计芯片,因此必须在 i2c1 节点下创建 mag3110 子节点,然 后在这个子节点内描述 mag3110 这个芯片的相关信息。打开 imx6ull-14x14-evk.dts 这个设备树 文件,然后找到如下内容:

1 &i2c1 {
2 clock-frequency = <100000>;
3 pinctrl-names = "default";
4 pinctrl-0 = <&pinctrl_i2c1>;
5 status = "okay";
6 
7 mag3110@0e {
8 compatible = "fsl,mag3110";
9 reg = <0x0e>;
10 position = <2>;
11 };
......
20 };

第 7~11 行,向 i2c1 添加 mag3110 子节点,

第 7 行“mag3110@0e”是子节点名字,“@” 后面的“0e”就是 mag3110 的 I2C 器件地址。

第 8 行设置 compatible 属性值为“fsl,mag3110”。

第 9 行的 reg 属性也是设置 mag3110 的器件地址的,因此值为 0x0e。

I2C 设备节点的创建重点 是 compatible 属性和 reg 属性的设置,一个用于匹配驱动,一个用于设置器件地址。

3.2:I2C 设备数据收发处理流程

在 61.1.2 小节已经说过了,I2C 设备驱动首先要做的就是初始化 i2c_driver 并向 Linux 内核 注册。当设备和驱动匹配以后 i2c_driver 里面的 probe 函数就会执行,probe 函数里面所做的就 是字符设备驱动那一套了。一般需要在 probe 函数里面初始化 I2C 设备,要初始化 I2C 设备就 必须能够对 I2C 设备寄存器进行读写操作,这里就要用到 i2c_transfer 函数了。i2c_transfer 函数 最终会调用 I2C 适配器中 i2c_algorithm 里面的 master_xfer 函数,对于 I.MX6U 而言就是 i2c_imx_xfer 这个函数。i2c_transfer 函数原型如下:

int i2c_transfer(struct i2c_adapter *adap, 
struct i2c_msg *msgs, 
int num)

函数参数和返回值含义如下:

adap:所使用的 I2C 适配器,i2c_client 会保存其对应的 i2c_adapter。

msgs:I2C 要发送的一个或多个消息。

num:消息数量,也就是 msgs 的数量。

返回值:负值,失败,其他非负值,发送的 msgs 数量。

我们重点来看一下 msgs 这个参数,这是一个 i2c_msg 类型的指针参数,I2C 进行数据收发 说白了就是消息的传递,Linux 内核使用 i2c_msg 结构体来描述一个消息。i2c_msg 结构体定义 在 include/uapi/linux/i2c.h 文件中,结构体内容如下:

68 struct i2c_msg {
69 __u16 addr; /* 从机地址 */
70 __u16 flags; /* 标志 */
71 #define I2C_M_TEN 0x0010
72 #define I2C_M_RD 0x0001
73 #define I2C_M_STOP 0x8000
74 #define I2C_M_NOSTART 0x4000
75 #define I2C_M_REV_DIR_ADDR 0x2000 
76 #define I2C_M_IGNORE_NAK 0x1000 
77 #define I2C_M_NO_RD_ACK 0x0800
78 #define I2C_M_RECV_LEN 0x0400
79 __u16 len; /* 消息(本 msg)长度 */
80 __u8 *buf; /* 消息数据 */
81 };

使用 i2c_transfer 函数发送数据之前要先构建好 i2c_msg,使用 i2c_transfer 进行 I2C 数据收 发的示例代码如下:

1 /* 设备结构体 */
2 struct xxx_dev {
3 ......
4 void *private_data; /* 私有数据,一般会设置为 i2c_client */
5 };
6 
7 /*
8 * @description : 读取 I2C 设备多个寄存器数据
9 * @param – dev : I2C 设备
10 * @param – reg : 要读取的寄存器首地址
11 * @param – val : 读取到的数据
12 * @param – len : 要读取的数据长度
13 * @return : 操作结果
14 */
15 static int xxx_read_regs(struct xxx_dev *dev, u8 reg, void *val,
int len)
16 {
17 int ret;
18 struct i2c_msg msg[2];
19 struct i2c_client *client = (struct i2c_client *)
dev->private_data;
20
21 /* msg[0],第一条写消息,发送要读取的寄存器首地址 */
22 msg[0].addr = client->addr; /* I2C 器件地址 */
23 msg[0].flags = 0; /* 标记为发送数据 */
24 msg[0].buf = &reg; /* 读取的首地址 */
25 msg[0].len = 1; /* reg 长度 */
26
27 /* msg[1],第二条读消息,读取寄存器数据 */
28 msg[1].addr = client->addr; /* I2C 器件地址 */
29 msg[1].flags = I2C_M_RD; /* 标记为读取数据 */
30 msg[1].buf = val; /* 读取数据缓冲区 */
31 msg[1].len = len; /* 要读取的数据长度 */
32
33 ret = i2c_transfer(client->adapter, msg, 2);
34 if(ret == 2) {
35 ret = 0;
36 } else {
37 ret = -EREMOTEIO;
38 }
39 return ret;
40 }
41
42 /*
43 * @description : 向 I2C 设备多个寄存器写入数据
44 * @param – dev : 要写入的设备结构体
45 * @param – reg : 要写入的寄存器首地址
46 * @param – buf : 要写入的数据缓冲区
47 * @param – len : 要写入的数据长度
48 * @return : 操作结果
49 */
50 static s32 xxx_write_regs(struct xxx_dev *dev, u8 reg, u8 *buf,
u8 len)
51 {
52 u8 b[256];
53 struct i2c_msg msg;
54 struct i2c_client *client = (struct i2c_client *)
dev->private_data;
55 
56 b[0] = reg; /* 寄存器首地址 */
57 memcpy(&b[1],buf,len); /* 将要发送的数据拷贝到数组 b 里面 */
58 
59 msg.addr = client->addr; /* I2C 器件地址 */
60 msg.flags = 0; /* 标记为写数据 */
61
62 msg.buf = b; /* 要发送的数据缓冲区 */
63 msg.len = len + 1; /* 要发送的数据长度 */
64
65 return i2c_transfer(client->adapter, &msg, 1);
66 }

第2~5行,设备结构体,在设备结构体里面添加一个执行void的指针成员变量private_data, 此成员变量用于保存设备的私有数据。在 I2C 设备驱动中我们一般将其指向 I2C 设备对应的 i2c_client。

第 15~40 行,xxx_read_regs 函数用于读取 I2C 设备多个寄存器数据。

第 18 行定义了一个 i2c_msg 数组,2 个数组元素,因为 I2C 读取数据的时候要先发送要读取的寄存器地址,然后再 读取数据,所以需要准备两个 i2c_msg。一个用于发送寄存器地址,一个用于读取寄存器值。对于 msg[0],将 flags 设置为 0,表示写数据。msg[0]的 addr 是 I2C 设备的器件地址,msg[0]的 buf 成员变量就是要读取的寄存器地址。对于 msg[1],将 flags 设置为 I2C_M_RD,表示读取数据。 msg[1]的 buf 成员变量用于保存读取到的数据,len 成员变量就是要读取的数据长度。调用 i2c_transfer 函数完成 I2C 数据读操作。

第 50~66 行,xxx_write_regs 函数用于向 I2C 设备多个寄存器写数据,I2C 写操作要比读操 作简单一点,因此一个 i2c_msg 即可。数组 b 用于存放寄存器首地址和要发送的数据,

第 59 行 设置 msg 的 addr 为 I2C 器件地址。

第 60 行设置 msg 的 flags 为 0,也就是写数据。

第 62 行设 置要发送的数据,也就是数组 b。

第 63 行设置 msg 的 len 为 len+1,因为要加上一个字节的寄 存器地址。最后通过 i2c_transfer 函数完成向 I2C 设备的写操作。

另外还有两个API函数分别用于I2C数据的收发操作,这两个函数最终都会调用i2c_transfer。 首先来看一下 I2C 数据发送函数 i2c_master_send,函数原型如下:

int i2c_master_send(const struct i2c_client *client, 
const char *buf, 
int count)

函数参数和返回值含义如下:

client:I2C 设备对应的 i2c_client。

buf:要发送的数据。

count:要发送的数据字节数,要小于 64KB,以为 i2c_msg 的 len 成员变量是一个 u16(无 符号 16 位)类型的数据。

返回值:负值,失败,其他非负值,发送的字节数。

I2C 数据接收函数为 i2c_master_recv,函数原型如下:

int i2c_master_recv(const struct i2c_client *client, char *buf, 
int count)

函数参数和返回值含义如下:

client:I2C 设备对应的 i2c_client。

buf:要接收的数据。

count:要接收的数据字节数,要小于 64KB,以为 i2c_msg 的 len 成员变量是一个 u16(无 符号 16 位)类型的数据。 返回值:负值,失败,其他非负值,发送的字节数。 关于 Linux 下 I2C 设备驱动的编写流程就讲解到这里,重点就是 i2c_msg 的构建和 i2c_transfer 函数的调用,接下来我们就编写 AP3216C 这个 I2C 设备的 Linux 驱动。

4:实验程序编写

4.1:修改设备树

首先肯定是要修改 IO,AP3216C 用到了 I2C1 接口,I.MX6U-ALPHA 开发板上的 I2C1 接 口使用到了 UART4_TXD UART4_RXD,因此肯定要在设备树里面设置这两个 IO。如果要用 到 AP3216C 的中断功能的话还需要初始化 AP_INT 对应的 GIO1_IO01 这个 IO,本章实验我们 不使用中断功能。因此只需要设置 UART4_TXD 和 UART4_RXD 这两个 IO,NXP 其实已经将 他这两个 IO 设置好了,打开 imx6ull-alientek-emmc.dts,然后找到如下内容:

1 pinctrl_i2c1: i2c1grp {
2 fsl,pins = <
3 MX6UL_PAD_UART4_TX_DATA__I2C1_SCL 0x4001b8b0
4 MX6UL_PAD_UART4_RX_DATA__I2C1_SDA 0x4001b8b0
5 >;
6 };

pinctrl_i2c1 就是 I2C1 的 IO 节点,这里将 UART4_TXD 和 UART4_RXD 这两个 IO 分别 复用为 I2C1_SCL 和 I2C1_SDA,电气属性都设置为 0x4001b8b0。

4.2:在 i2c1 节点追加 ap3216c 子节点

AP3216C 是连接到 I2C1 上的,因此需要在 i2c1 节点下添加 ap3216c 的设备子节点,在 imx6ull-alientek-emmc.dts 文件中找到 i2c1 节点,此节点默认内容如下:

1 &i2c1 {
2 clock-frequency = <100000>;
3 pinctrl-names = "default";
4 pinctrl-0 = <&pinctrl_i2c1>;
5 status = "okay";
6 
7 mag3110@0e {
8 compatible = "fsl,mag3110";
9 reg = <0x0e>;
10 position = <2>;
11 };
12
13 fxls8471@1e {
14 compatible = "fsl,fxls8471";
15 reg = <0x1e>;
16 position = <0>;
17 interrupt-parent = <&gpio5>;
18 interrupts = <0 8>;
19 };
20 };

第 2 行,clock-frequency 属性为 I2C 频率,这里设置为 100KHz。

第 4 行,pinctrl-0 属性指定 I2C 所使用的 IO 为示例代码 61.5.1.1 中的 pinctrl_i2c1 子节 点

第 7~11 行,mag3110 是个磁力计,NXP 官方的 EVK 开发板上接了 mag3110,因此 NXP 在 i2c1 节点下添加了 mag3110 这个子节点。正点原子的 I.MX6U-ALPHA 开发板上没有用到 mag3110,因此需要将此节点删除掉。

第 13~19 行,NXP 官方 EVK 开发板也接了一个 fxls8471,正点原子的 I.MX6U-ALPHA 开发板同样没有此器件,所以也要将其删除掉。 将 i2c1 节点里面原有的 mag3110 和 fxls8471 这两个 I2C 子节点删除,然后添加 ap3216c 子节点信息,完成以后的 i2c1 节点内容如下所示:

1 &i2c1 {
2 clock-frequency = <100000>;
3 pinctrl-names = "default";
4 pinctrl-0 = <&pinctrl_i2c1>;
5 status = "okay";
6 
7 ap3216c@1e {
8 compatible = "alientek,ap3216c";
9 reg = <0x1e>;
10 };
11 };

第 7 行,ap3216c 子节点,@后面的“1e”是 ap3216c 的器件地址。

第 8 行,设置 compatible 值为“alientek,ap3216c”。

第 9 行,reg 属性也是设置 ap3216c 器件地址的,因此 reg 设置为 0x1e。

设备树修改完成以后使用“make dtbs”重新编译一下,然后使用新的设备树启动 Linux 内 核。/sys/bus/i2c/devices 目录下存放着所有 I2C 设备,如果设备树修改正确的话,会在 /sys/bus/i2c/devices 目录下看到一个名为“0-001e”的子目录,如图 61.5.1.1 所示:

 图 61.5.1.1 中的“0-001e”就是 ap3216c 的设备目录,“1e”就是 ap3216c 器件地址。进入 0-001e 目录,可以看到“name”文件,name 问价就保存着此设备名字,在这里就是“ap3216c”, 如图 61.5.1.2 所示:

 4.3:AP3216C 驱动编写

新建名为“21_iic”的文件夹,然后在 21_iic 文件夹里面创建 vscode 工程,工作区命名为 “iic”。工程创建好以后新建 ap3216c.c 和 ap3216creg.h 这两个文件,ap3216c.c 为 AP3216C 的 驱动代码,ap3216creg.h 是 AP3216C 寄存器头文件。先在 ap3216creg.h 中定义好 AP3216C 的寄 存器,输入如下内容,

#ifndef AP3216C_H
#define AP3216C_H
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: ap3216creg.h
作者	  	: 左忠凯
版本	   	: V1.0
描述	   	: AP3216C寄存器地址描述头文件
其他	   	: 无
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2019/9/2 左忠凯创建
***************************************************************/#define AP3216C_ADDR    	0X1E	/* AP3216C器件地址  *//* AP3316C寄存器 */
#define AP3216C_SYSTEMCONG	0x00	/* 配置寄存器       */
#define AP3216C_INTSTATUS	0X01	/* 中断状态寄存器   */
#define AP3216C_INTCLEAR	0X02	/* 中断清除寄存器   */
#define AP3216C_IRDATALOW	0x0A	/* IR数据低字节     */
#define AP3216C_IRDATAHIGH	0x0B	/* IR数据高字节     */
#define AP3216C_ALSDATALOW	0x0C	/* ALS数据低字节    */
#define AP3216C_ALSDATAHIGH	0X0D	/* ALS数据高字节    */
#define AP3216C_PSDATALOW	0X0E	/* PS数据低字节     */
#define AP3216C_PSDATAHIGH	0X0F	/* PS数据高字节     */#endif

ap3216creg.h 没什么好讲的,就是一些寄存器宏定义。然后在 ap3216c.c 输入如下内容:

#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ide.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/gpio.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/of_gpio.h>
#include <linux/semaphore.h>
#include <linux/timer.h>
#include <linux/i2c.h>
#include <asm/mach/map.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include "ap3216creg.h"
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: ap3216c.c
作者	  	: 左忠凯
版本	   	: V1.0
描述	   	: AP3216C驱动程序
其他	   	: 无
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2019/9/2 左忠凯创建
***************************************************************/
#define AP3216C_CNT	1
#define AP3216C_NAME	"ap3216c"struct ap3216c_dev {dev_t devid;			/* 设备号 	 */struct cdev cdev;		/* cdev 	*/struct class *class;	/* 类 		*/struct device *device;	/* 设备 	 */struct device_node	*nd; /* 设备节点 */int major;			/* 主设备号 */void *private_data;	/* 私有数据 */unsigned short ir, als, ps;		/* 三个光传感器数据 */
};static struct ap3216c_dev ap3216cdev;/** @description	: 从ap3216c读取多个寄存器数据* @param - dev:  ap3216c设备* @param - reg:  要读取的寄存器首地址* @param - val:  读取到的数据* @param - len:  要读取的数据长度* @return 		: 操作结果*/
static int ap3216c_read_regs(struct ap3216c_dev *dev, u8 reg, void *val, int len)
{int ret;struct i2c_msg msg[2];struct i2c_client *client = (struct i2c_client *)dev->private_data;/* msg[0]为发送要读取的首地址 */msg[0].addr = client->addr;			/* ap3216c地址 */msg[0].flags = 0;					/* 标记为发送数据 */msg[0].buf = &reg;					/* 读取的首地址 */msg[0].len = 1;						/* reg长度*//* msg[1]读取数据 */msg[1].addr = client->addr;			/* ap3216c地址 */msg[1].flags = I2C_M_RD;			/* 标记为读取数据*/msg[1].buf = val;					/* 读取数据缓冲区 */msg[1].len = len;					/* 要读取的数据长度*/ret = i2c_transfer(client->adapter, msg, 2);if(ret == 2) {ret = 0;} else {printk("i2c rd failed=%d reg=%06x len=%d\n",ret, reg, len);ret = -EREMOTEIO;}return ret;
}/** @description	: 向ap3216c多个寄存器写入数据* @param - dev:  ap3216c设备* @param - reg:  要写入的寄存器首地址* @param - val:  要写入的数据缓冲区* @param - len:  要写入的数据长度* @return 	  :   操作结果*/
static s32 ap3216c_write_regs(struct ap3216c_dev *dev, u8 reg, u8 *buf, u8 len)
{u8 b[256];struct i2c_msg msg;struct i2c_client *client = (struct i2c_client *)dev->private_data;b[0] = reg;					/* 寄存器首地址 */memcpy(&b[1],buf,len);		/* 将要写入的数据拷贝到数组b里面 */msg.addr = client->addr;	/* ap3216c地址 */msg.flags = 0;				/* 标记为写数据 */msg.buf = b;				/* 要写入的数据缓冲区 */msg.len = len + 1;			/* 要写入的数据长度 */return i2c_transfer(client->adapter, &msg, 1);
}/** @description	: 读取ap3216c指定寄存器值,读取一个寄存器* @param - dev:  ap3216c设备* @param - reg:  要读取的寄存器* @return 	  :   读取到的寄存器值*/
static unsigned char ap3216c_read_reg(struct ap3216c_dev *dev, u8 reg)
{u8 data = 0;ap3216c_read_regs(dev, reg, &data, 1);return data;#if 0struct i2c_client *client = (struct i2c_client *)dev->private_data;return i2c_smbus_read_byte_data(client, reg);
#endif
}/** @description	: 向ap3216c指定寄存器写入指定的值,写一个寄存器* @param - dev:  ap3216c设备* @param - reg:  要写的寄存器* @param - data: 要写入的值* @return   :    无*/
static void ap3216c_write_reg(struct ap3216c_dev *dev, u8 reg, u8 data)
{u8 buf = 0;buf = data;ap3216c_write_regs(dev, reg, &buf, 1);
}/** @description	: 读取AP3216C的数据,读取原始数据,包括ALS,PS和IR, 注意!*				: 如果同时打开ALS,IR+PS的话两次数据读取的时间间隔要大于112.5ms* @param - ir	: ir数据* @param - ps 	: ps数据* @param - ps 	: als数据 * @return 		: 无。*/
void ap3216c_readdata(struct ap3216c_dev *dev)
{unsigned char i =0;unsigned char buf[6];/* 循环读取所有传感器数据 */for(i = 0; i < 6; i++)	{buf[i] = ap3216c_read_reg(dev, AP3216C_IRDATALOW + i);	}if(buf[0] & 0X80) 	/* IR_OF位为1,则数据无效 */dev->ir = 0;					else 				/* 读取IR传感器的数据   		*/dev->ir = ((unsigned short)buf[1] << 2) | (buf[0] & 0X03); 			dev->als = ((unsigned short)buf[3] << 8) | buf[2];	/* 读取ALS传感器的数据 			 */  if(buf[4] & 0x40)	/* IR_OF位为1,则数据无效 			*/dev->ps = 0;    													else 				/* 读取PS传感器的数据    */dev->ps = ((unsigned short)(buf[5] & 0X3F) << 4) | (buf[4] & 0X0F); 
}/** @description		: 打开设备* @param - inode 	: 传递给驱动的inode* @param - filp 	: 设备文件,file结构体有个叫做private_data的成员变量* 					  一般在open的时候将private_data指向设备结构体。* @return 			: 0 成功;其他 失败*/
static int ap3216c_open(struct inode *inode, struct file *filp)
{filp->private_data = &ap3216cdev;/* 初始化AP3216C */ap3216c_write_reg(&ap3216cdev, AP3216C_SYSTEMCONG, 0x04);		/* 复位AP3216C 			*/mdelay(50);														/* AP3216C复位最少10ms 	*/ap3216c_write_reg(&ap3216cdev, AP3216C_SYSTEMCONG, 0X03);		/* 开启ALS、PS+IR 		*/return 0;
}/** @description		: 从设备读取数据 * @param - filp 	: 要打开的设备文件(文件描述符)* @param - buf 	: 返回给用户空间的数据缓冲区* @param - cnt 	: 要读取的数据长度* @param - offt 	: 相对于文件首地址的偏移* @return 			: 读取的字节数,如果为负值,表示读取失败*/
static ssize_t ap3216c_read(struct file *filp, char __user *buf, size_t cnt, loff_t *off)
{short data[3];long err = 0;struct ap3216c_dev *dev = (struct ap3216c_dev *)filp->private_data;ap3216c_readdata(dev);data[0] = dev->ir;data[1] = dev->als;data[2] = dev->ps;err = copy_to_user(buf, data, sizeof(data));return 0;
}/** @description		: 关闭/释放设备* @param - filp 	: 要关闭的设备文件(文件描述符)* @return 			: 0 成功;其他 失败*/
static int ap3216c_release(struct inode *inode, struct file *filp)
{return 0;
}/* AP3216C操作函数 */
static const struct file_operations ap3216c_ops = {.owner = THIS_MODULE,.open = ap3216c_open,.read = ap3216c_read,.release = ap3216c_release,
};/** @description     : i2c驱动的probe函数,当驱动与*                    设备匹配以后此函数就会执行* @param - client  : i2c设备* @param - id      : i2c设备ID* @return          : 0,成功;其他负值,失败*/
static int ap3216c_probe(struct i2c_client *client, const struct i2c_device_id *id)
{/* 1、构建设备号 */if (ap3216cdev.major) {ap3216cdev.devid = MKDEV(ap3216cdev.major, 0);register_chrdev_region(ap3216cdev.devid, AP3216C_CNT, AP3216C_NAME);} else {alloc_chrdev_region(&ap3216cdev.devid, 0, AP3216C_CNT, AP3216C_NAME);ap3216cdev.major = MAJOR(ap3216cdev.devid);}/* 2、注册设备 */cdev_init(&ap3216cdev.cdev, &ap3216c_ops);cdev_add(&ap3216cdev.cdev, ap3216cdev.devid, AP3216C_CNT);/* 3、创建类 */ap3216cdev.class = class_create(THIS_MODULE, AP3216C_NAME);if (IS_ERR(ap3216cdev.class)) {return PTR_ERR(ap3216cdev.class);}/* 4、创建设备 */ap3216cdev.device = device_create(ap3216cdev.class, NULL, ap3216cdev.devid, NULL, AP3216C_NAME);if (IS_ERR(ap3216cdev.device)) {return PTR_ERR(ap3216cdev.device);}ap3216cdev.private_data = client;return 0;
}/** @description     : i2c驱动的remove函数,移除i2c驱动的时候此函数会执行* @param - client 	: i2c设备* @return          : 0,成功;其他负值,失败*/
static int ap3216c_remove(struct i2c_client *client)
{/* 删除设备 */cdev_del(&ap3216cdev.cdev);unregister_chrdev_region(ap3216cdev.devid, AP3216C_CNT);/* 注销掉类和设备 */device_destroy(ap3216cdev.class, ap3216cdev.devid);class_destroy(ap3216cdev.class);return 0;
}/* 传统匹配方式ID列表 */
static const struct i2c_device_id ap3216c_id[] = {{"alientek,ap3216c", 0},  {}
};/* 设备树匹配列表 */
static const struct of_device_id ap3216c_of_match[] = {{ .compatible = "alientek,ap3216c" },{ /* Sentinel */ }
};/* i2c驱动结构体 */	
static struct i2c_driver ap3216c_driver = {.probe = ap3216c_probe,.remove = ap3216c_remove,.driver = {.owner = THIS_MODULE,.name = "ap3216c",.of_match_table = ap3216c_of_match, },.id_table = ap3216c_id,
};/** @description	: 驱动入口函数* @param 		: 无* @return 		: 无*/
static int __init ap3216c_init(void)
{int ret = 0;ret = i2c_add_driver(&ap3216c_driver);return ret;
}/** @description	: 驱动出口函数* @param 		: 无* @return 		: 无*/
static void __exit ap3216c_exit(void)
{i2c_del_driver(&ap3216c_driver);
}/* module_i2c_driver(ap3216c_driver) */module_init(ap3216c_init);
module_exit(ap3216c_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("zuozhongkai");

第 32~41 行,ap3216c 设备结构体,

第 39 行的 private_data 成员变量用于存放 ap3216c 对 应的 i2c_client。

第 40 行的 ir、als 和 ps 分别存储 AP3216C 的 IR、ALS 和 PS 数据。

第 43 行,定义一个 ap3216c_dev 类型的设备结构体变量 ap3216cdev。

第 53~79 行,ap3216c_read_regs 函数实现多字节读取,但是 AP3216C 好像不支持连续多字 节读取,此函数在测试其他 I2C 设备的时候可以实现多给字节连续读取,但是在 AP3216C 上不 能连续读取多个字节。不过读取一个字节没有问题的。

第 89~105 行,ap3216c_write_regs 函数实现连续多字节写操作。

第 113~124 行,ap3216c_read_reg 函数用于读取 AP3216C 的指定寄存器数据,用于一个寄 存器的数据读取

第 133~138 行,ap3216c_write_reg 函数用于向 AP3216C 的指定寄存器写入数据,用于一个 寄存器的数据写操作。

第 148~170 行,读取 AP3216C 的 PS、ALS 和 IR 等传感器原始数据值。

第 179~230 行,标准的字符设备驱动框架。

第 239~269 行,ap3216c_probe 函数,当 I2C 设备和驱动匹配成功以后此函数就会执行,和 platform 驱动框架一样。此函数前面都是标准的字符设备注册代码,最后面会将此函数的第一 个参数 client 传递给 ap3216cdev 的 private_data 成员变量。

第 289~292 行,ap3216c_id 匹配表,i2c_device_id 类型。用于传统的设备和驱动匹配,也 就是没有使用设备树的时候。

第 295~298 行,ap3216c_of_match 匹配表,of_device_id 类型,用于设备树设备和驱动匹 配。这里只写了一个 compatible 属性,值为“alientek,ap3216c”。

第 301~310 行,ap3216c_driver 结构体变量,i2c_driver 类型。

第 317~323 行,驱动入口函数 ap3216c_init,此函数通过调用 i2c_add_driver 来向 Linux 内 核注册 i2c_driver,也就是 ap3216c_driver。 第 330~333 行,驱动出口函数 ap3216c_exit,此函数通过调用 i2c_del_driver 来注销掉前面 注册的 ap3216c_driver。

4.4:编写测试 APP

#include "stdio.h"
#include "unistd.h"
#include "sys/types.h"
#include "sys/stat.h"
#include "sys/ioctl.h"
#include "fcntl.h"
#include "stdlib.h"
#include "string.h"
#include <poll.h>
#include <sys/select.h>
#include <sys/time.h>
#include <signal.h>
#include <fcntl.h>
/***************************************************************
Copyright © ALIENTEK Co., Ltd. 1998-2029. All rights reserved.
文件名		: ap3216cApp.c
作者	  	: 左忠凯
版本	   	: V1.0
描述	   	: ap3216c设备测试APP。
其他	   	: 无
使用方法	 :./ap3216cApp /dev/ap3216c
论坛 	   	: www.openedv.com
日志	   	: 初版V1.0 2019/9/20 左忠凯创建
***************************************************************//** @description		: main主程序* @param - argc 	: argv数组元素个数* @param - argv 	: 具体参数* @return 			: 0 成功;其他 失败*/
int main(int argc, char *argv[])
{int fd;char *filename;unsigned short databuf[3];unsigned short ir, als, ps;int ret = 0;if (argc != 2) {printf("Error Usage!\r\n");return -1;}filename = argv[1];fd = open(filename, O_RDWR);if(fd < 0) {printf("can't open file %s\r\n", filename);return -1;}while (1) {ret = read(fd, databuf, sizeof(databuf));if(ret == 0) { 			/* 数据读取成功 */ir =  databuf[0]; 	/* ir传感器数据 */als = databuf[1]; 	/* als传感器数据 */ps =  databuf[2]; 	/* ps传感器数据 */printf("ir = %d, als = %d, ps = %d\r\n", ir, als, ps);}usleep(200000); /*100ms */}close(fd);	/* 关闭文件 */	return 0;
}

ap3216cApp.c 文件内容很简单,就是在 while 循环中不断的读取 AP3216C 的设备文件,从 而得到 ir、als 和 ps 这三个数据值,然后将其输出到终端上。

5:Makefile文件编写

KERNELDIR :=/home/zhulinux/linux/alientek_linux/linuxCURRENT_PATH := $(shell pwd)
obj-m :=  ap3216c.obuild: kernel_moduleskernel_modules:$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) modules
clean:$(MAKE) -C $(KERNELDIR) M=$(CURRENT_PATH) clean

6:编译测试 APP

在名为Compiletest.sh的shell脚本内 ,将fun改变为 "ap3216c"即可,并把driver改为false运行shell脚本

​
#!/bin/bash
#把dts编译的dtb文件拷贝到 tftpboot目录下
cp -r ~/linux/alientek_linux/linux/arch/arm/boot/dts/imx6ull_alientek_emmc.dtb ~/linux/tftpboot/ -fdriver=false
fun="ap3216c"funko="${fun}.ko"
funoApp="${fun}App"
funcApp="${fun}App.c"if [[ $driver == true ]]; thenfundeviceko="${fun}device.ko"fundriverko="${fun}driver.ko"
fiif [ -f "./$funoApp" ]; thenecho "文件存在,正在删除..."rm "./$funoApp"echo "文件已删除"
elseecho "文件不存在,不执行删除操作。"
fiarm-linux-gnueabihf-gcc $funcApp -o $funoApp
if [[ $driver == true ]];thensudo cp $fundeviceko $fundriverko $funoApp ~/linux/nfs/rootfs/lib/modules/4.1.15/ -f
elsesudo cp $funko $funoApp ~/linux/nfs/rootfs/lib/modules/4.1.15/ -f
fi​

7:运行测试

将上一小节编译出来 ap3216c.ko 和 ap3216cApp 这两个文件拷贝到 rootfs/lib/modules/4.1.15 目录中,重启开发板,进入到目录 lib/modules/4.1.15 中。输入如下命令加载 ap3216c.ko 这个驱 动模块。

depmod //第一次加载驱动的时候需要运行此命令
modprobe ap3216c.ko //加载驱动模块

当驱动模块加载成功以后使用 ap3216cApp 来测试,输入如下命令:

./ap3216cApp /dev/ap3216c

大家可以用手电筒照一下 AP3216C,或者手指靠近 AP3216C 来观察传感器数据有没有变 化

 本文仅在记录学习正点原子imx6ull-mini开发板的过程,不做他用。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/391770.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python中类class的魔法方法

开始介绍之前&#xff0c;我们先看下之前文章我们介绍过的内置类merryview的一些方法&#xff0c;如下图所示&#xff1a; 有很多双下划线开始和结束的method&#xff0c;这么多method是做啥子用的呢&#xff1f; 其实这些方法就是我们常说的魔法方法&#xff0c;也是python中的…

力扣——3143.正方形中的最多点数

题目&#xff1a; 自己的题解&#xff08;史&#xff09;&#xff1a; PS&#xff1a;自己看了好几遍才看懂题目&#xff0c;然后想看题解&#xff0c;但是又看到了“标签”是 于是靠着自己效率极低的写了出来。 思路&#xff1a;二分 首先利用map&#xff0c;将每个坐标和标…

Es6常用的一些数组处理方法

在平时的开发中&#xff0c;我们很多时候用到数组结构数据&#xff0c;那么如何高效处理数组是可以提高开发效率的&#xff0c;现在越来越多人使用es6&#xff0c;那么它的很多方法简化了我们对数据的操作&#xff0c;比如以前数组循环用for循环写比较多的代码&#xff0c;现在…

20 注意力机制—注意力机制在seq2seq

1.使用注意力机制的seq2seq 注意力机制在 NLP 中的应用,也是最早的工作之一动机 在机器翻译的时候,每个生成的词可能相关于源句子中不同的词在语言翻译的时候,中文和英文之间的翻译可能会存在倒装,但是可能在西方语言之间,相同意思的句子中的词的位置可能近似地是对应的,…

Linux命令用法

文章目录 前言一、Linux基础命令1. Linux目录结构2. Linux命令入门3. 目录切换相关命令&#xff08;cd、pwd&#xff09;4. 相对路径、绝对路径和特殊路径符5. 创建目录命令&#xff08;(mkdir&#xff09;6. 文件操作命令part1(touch、cat、more&#xff09;7. 文件操作命令pa…

端侧模型与端到端模型,两者是一个东西吗

端侧模型 专为在端侧设备上运行而设计的人工智能模型&#xff0c;它们通常具有较小的模型参数量&#xff0c;以适应端侧设备的计算能力和内存限制。端侧模型可以快速响应&#xff0c;保护用户隐私&#xff0c;并且无需依赖云端算力&#xff0c;因此在消费电子产业中具有重要的…

学习记录——day25 多线程编程 临界资源 临界区 竞态 线程的同步互斥机制(用于解决竟态)

目录 ​编辑 一、多进程与多线程对比 二、 临界资源 临界区 竞态 例1&#xff1a;临界资源 实现 输入输出 例2&#xff1a;对临界资源 进行 减减 例子3&#xff1a;临界资源抢占使用 三、线程的同步互斥机制&#xff08;用于解决竟态&#xff09; 3.1基本概念 3.2线…

C# 实现改造 GooFlow 流程图插件与数据库应用的结合

目录 关于 GooFlow 功能需求 范例运行环境 设计数据表 流程项目表 流程项目节点明细表 流程项目节点审批人表 人员信息表 示例代码 流程图主功能 设置审批人信息 运行结果演示 总结 关于 GooFlow GooFlow 一个基于 Jquery/FontAwesome 的流程图/架构图画图插件&…

Spring File Storage(文件的对象存储)框架基本使用指南

概述 本文仅作为快速入门&#xff0c;深入学习及使用详见官网 云存储 在开发过程当中&#xff0c;会使用到存文档、图片、视频、音频等等&#xff0c;这些都会涉及存储的问题&#xff0c;文件可以直接存服务器&#xff0c;但需要考虑带宽和存储空间&#xff0c;另外一种方式…

漏洞挖掘 | src中一次证书站有趣的SQL注入

一、确定站点 按照以前文章中提到的寻找可进站测试的思路&#xff0c;找到了某证书站的一处站点&#xff0c;通告栏中写明了初始密码的结构&#xff0c;因此我们可通过信息搜集进入该站点(可以考虑去搜集比较老的学号&#xff0c;因为这样的账号要么被冻结&#xff0c;要么就是…

AMD Product Specifications - AMD 产品规格汇总

AMD Product Specifications - AMD 产品规格汇总 1. Desktop, Laptop and Workstation Processor Specifications (台式处理器、笔记本电脑处理器和工作站处理器规格)2. Server Processor Specifications (服务器处理器规格)3. Embedded Processor Specifications (嵌入式处理器…

土耳其射击运动员尤素夫迪凯克在巴黎奥运会上成为互联网热门人物

这名51岁的男子以自己的方式获得了第二名,这对他的祖国来说是一个历史性的时刻。 这位冷静沉着的土耳其手枪射击运动员周二在 2024 年巴黎奥运会上获得银牌&#xff0c;在网上吸引了众多粉丝。 尤素夫迪克与他的搭档塞夫瓦尔伊莱达塔尔汉在混合团体 10 米气手枪比赛中获得第二…

jupyter notebook安装

1.安装 pip install notebook 2.显示配置文件&#xff1a; jupyter notebook --generate-config 3.修改代码路径&#xff1a; 编辑配置文件C:\Users\a\.jupyterjupyter_notebook_config.py 4.运行 jupyter notebook 会自动弹出http://localhost:8888/tree

QT 笔记

HTTPS SSL配置 下载配置 子父对象 QTimer *timer new QTimer; // QTimer inherits QObject timer->inherits("QTimer"); // returns true timer->inherits("QObject"); // returns true timer->inherits("QAbst…

保形分位数回归(CQR)

目录 简介1 介绍提纲式总结 分位数回归从数据中估计分位数 3 共性预测4 保形分位数回归(CQR)两个定理 6 实验7 结论 简介 保形预测是一种构造在有限样本中获得有效覆盖的预测区间的技术&#xff0c;无需进行分布假设。尽管有这种吸引力&#xff0c;但现有的保形方法可能是不必…

【文心智能体】梗图七夕版,一分钟让你看懂如何优化prompt,以及解析低代码工作流编排实现过程和零代码结合插件实现过程,依然是干货满满,进来康康吧

目录 背景什么是梗图梗图概念梗图结构 低代码开发最小运行单元大模型链提示词模板文心模板输出效果 测试工具链HTTP请求工具 梗图工具链全流程 梗图优化Prompt提示词优化后梗图结构提示词前后对比优化前效果优化后效果API接口BOS图片水印 梗图插件格式说明构思插件清单文件定义…

HTML-07.表格标签

一、要制作的表格如下 二、代码如下 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>表格标签<…

数据结构——双链表详解(超详细)

前言&#xff1a; 小编在之前已经写过单链表的创建了&#xff0c;接下来要开始双链表的讲解了&#xff0c;双链表比单链表要复杂一些&#xff0c;不过确实要比单链表更好进行实现&#xff01;下面紧跟小编的步伐&#xff0c;开启今天的双链表之旅&#xff01; 目录 1.概念和结构…

【已解决】没有密码,如何解除PPT的“只读方式”?

PPT可以设置有密码的“只读方式”&#xff0c;保护文件不被随意编辑更改。 在设置保护后&#xff0c;打开PPT时就会弹出对话框&#xff0c;提示需要“输入密码以修改或以只读方式打开”&#xff0c;也就是输入密码才能编辑修改PPT&#xff0c;如果点击“只读”也能打开文件&am…

[BJDCTF2020]Mark loves cat1

打开题目 发现这么多链接&#xff0c;以为要一点点去找功能上的漏洞。当你源代码&#xff0c;dirsearch&#xff0c;抓包等等操作之后&#xff0c;发现什么都没有。所以这题又是一道源码泄露题&#xff0c;上GItHack。扫描结果如下 http://63f29a80-e08b-43ae-a6d0-8e70fb02ea…