动态规划.

 

目录

(一)递归到动规的一般转化方法

(二)动规解题的一般思路 

1. 将原问题分解为子问题

2. 确定状态

3. 确定一些初始状态(边界状态)的值

4. 确定状态转移方程

(三)能用动规解决的问题的特点

1.最优子结构

2.无后效性

(四)动归的常用两种形式 

1)递归型

2)递推型

(五)例题

数字三角形

题目

解题思路

题目解答

运行该程序会超时,为什么呢?

递归改递推

空间优化

 最长上升子序列

题目

解题思路

1.找子问题

2. 确定状态

3. 找出状态转移方程

题目解答

 公共子序列 

题目

解题思路

题目解答


(一)递归到动规的一般转化方法


        递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始,逐步填充数组,相当于计算递归函数值的逆过程。

(二)动规解题的一般思路 


1. 将原问题分解为子问题

        把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。
子问题的解一旦求出就会被保存,所以每个子问题只需求解一次。

2. 确定状态

        在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状态”。一个“状态”对应于一个或多个子问题,所谓某个“状态”下的“值”,就是这个“状态”所对应的子问题的解。
        用动态规划解题,经常碰到的情况是,K个整型变量能构成一个状态(如数字三角形中的行号和列号这两个变量构成“状态”)。如果这K个整型变量的取值范围分别是N1, N2, ……Nk,那么,我们就可以用一个K维的数组array[N1] [N2]……[Nk]来存储各个状态的“值”。这个“值”未必就是一个整数或浮点数,可能是需要一个结构才能表示的,那么array就可以是一个结构数组。一个 “状态”下的“值”通常会是一个或多个子问题的解。 

3. 确定一些初始状态(边界状态)的值

        以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4. 确定状态转移方程

        定义出什么是“状态”,以及在该 “状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(“人人为我”递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

(三)能用动规解决的问题的特点


1.最优子结构

        问题具有最优子结构性质。如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质。

2.无后效性

        无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

(四)动归的常用两种形式 


1)递归型

        优点:直观,容易编写
        缺点:可能会因递归层数太深导致爆栈,函数调用带来额外时间开销。无法使用滚动数组节省空间。总体来说,比递推型慢。

2)递推型

        效率高,有可能使用滚动数组节省空间

(五)例题

数字三角形

题目

        图给出了一个数字三角形。从三角形的顶部到底部有很多条不同的路径。对于每条路径,把路径上面的数加起来可以得到一个和,你的任务就是找到最大的和。
        注意:路径上的每一步只能从一个数走到下一层上和它最近的左边的那个数或者右边的那个数。

输入

        输入的是一行是一个整数N (1 < N <= 100),给出三角形的行数。下面的N行给出数字三角形。数字三角形上的数的范围都在0和100之间。

5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

输出

        输出最大的和。

30

解题思路

用二维数组存放数字三角形。
D( r, j)   : 第r行第 j 个数字(r,j从1开始算)
MaxSum(r, j) :   从D(r,j)到底边的各条路径中,
                          最佳路径的数字之和。
问题:求 MaxSum(1,1)
典型的递归问题。
D(r, j)出发,下一步只能走D(r+1,j)或者D(r+1, j+1)。故对于N行的三角形:
if ( r == N)
        MaxSum(r,j) = D(r,j)
else
        MaxSum( r, j) = Max{ MaxSum(r+1,j), MaxSum(r+1,j+1) }+ D(r,j)

题目解答

#include <iostream> 
#include <algorithm>
#define MAX 101 
using namespace std;
int D[MAX][MAX]; 
int n; 
int MaxSum(int i, int j){if(i==n)return D[i][j]; int x = MaxSum(i+1,j); int y = MaxSum(i+1,j+1); return max(x,y)+D[i][j];
}
int main(){int i,j;cin >> n;for(i=1;i<=n;i++)for(j=1;j<=i;j++)cin >> D[i][j];cout << MaxSum(1,1) << endl;
}

运行该程序会超时,为什么呢?

        原因是重复计算,如果采用递规的方法,深度遍历每条路径,存在大量重复计算。则时间复杂度为 2n,对于 n = 100 行,肯定超时。

改进

        如果每算出一个MaxSum(r,j)就保存起来,下次用到其值的时候直接取用,则可免去重复计算。那么可以用O(n2)时间完成计算。因为三角形的数字总数是 n(n+1)/2

#include <iostream> 
#include <algorithm> 
using namespace std;
#define MAX 101 
int D[MAX][MAX];    
int n; 
int maxSum[MAX][MAX];
int MaxSum(int i, int j)
{if( maxSum[i][j] != -1 )return maxSum[i][j]; if(i==n)  maxSum[i][j] = D[i][j]; else {int x = MaxSum(i+1,j); int y = MaxSum(i+1,j+1); maxSum[i][j] = max(x,y)+ D[i][j];}return maxSum[i][j];int main(){int i,j; cin >> n; for(i=1;i<=n;i++)for(j=1;j<=i;j++) {cin >> D[i][j]; maxSum[i][j] = -1;}cout << MaxSum(1,1) << endl;
}

递归改递推

#include <iostream> 
#include <algorithm>
using namespace std;
#define MAX 101 
int D[MAX][MAX];   
int n; 
int maxSum[MAX][MAX]; int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) cin >> D[i][j];for( int i = 1;i <= n; ++ i )maxSum[n][i] = D[n][i];for( int i = n-1; i>= 1;  --i ) for( int j = 1; j <= i; ++j ) maxSum[i][j] =max(maxSum[i+1][j],maxSum[i+1][j+1]) + D[i][j];cout << maxSum[1][1] << endl; 
}

空间优化

        没必要用二维maxSum数组存储每一个MaxSum(r,j),只要从底层一行行向上递推,那么只要一维数组maxSum[100]即可,即只要存储一行的MaxSum值就可以。

        进一步考虑,连maxSum数组都可以不要,直接用D的第n行替代maxSum即可。

        节省空间,时间复杂度不变

#include <iostream> 
#include <algorithm> 
using namespace std;
#define MAX 101 
int D[MAX][MAX]; 
int n; 
int * maxSum; int main(){ int i,j; cin >> n; for(i=1;i<=n;i++) for(j=1;j<=i;j++) cin >> D[i][j]; maxSum = D[n]; //maxSum指向第n行for( int i = n-1; i>= 1;  --i ) for( int j = 1; j <= i; ++j ) maxSum[j] = max(maxSum[j],maxSum[j+1]) + D[i][j]; cout << maxSum[1] << endl; 
}

 最长上升子序列

题目

        一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
        你的任务,就是对于给定的序列,求出最长上升子序列的长度。

输入 

        输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。 

7
1 7 3 5 9 4 8

输出 

        最长上升子序列的长度。 

4

解题思路

1.找子问题

        “求序列的前n个元素的最长上升子序列的长度”是个子问题,但这样分解子问题,不具有“无后效性”
        假设F(n) = x,但可能有多个序列满足F(n) = x。有的序列的最后一个元素比 an+1小,则加上an+1就能形成更长上升子序列;有的序列最后一个元素不比an+1小……以后的事情受如何达到状态n的影响,不符合“无后效性”
        “求以ak(k=1, 2, 3…N)为终点的最长上升子序列的长度”
        一个上升子序列中最右边的那个数,称为该子序列的 “终点”。
        虽然这个子问题和原问题形式上并不完全一样,但是只要这N个子问题都解决了,那么这N个子问题的解中,最大的那个就是整个问题的解。 

2. 确定状态

        子问题只和一个变量-- 数字的位置相关。因此序列中数的位置k 就是“状态”,而状态 k 对应的“值”,就是以ak做为 “终点”的最长上升子序列的长度。
        状态一共有N个。

3. 找出状态转移方程

        maxLen (k)表示以ak做为“终点”的最长上升子序列的长度那么:
        初始状态:maxLen (1) = 1
        maxLen (k) = max { maxLen (i):1<=i < k 且 ai < ak且 k≠1 } + 1
                若找不到这样的i,则maxLen(k) = 1
        maxLen(k)的值,就是在ak左边,“终点”数值小于ak ,且长度最大的那个上升子序列的长度再加1。因为ak左边任何“终点”小于ak的子序列,加上ak后就能形成一个更长的上升子序列。

题目解答

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 1010;
int a[MAXN];
int maxLen[MAXN];int main(){int N;cin >> N;for(int i = 1;i <= N;++i){cin >>a[i];maxLen[i] = 1;}for(int i = 2;i <= N;++i){//每次求以第i个数为终点的最长上升子序列的长度for( int j = 1; j < i; ++j) //察看以第j个数为终点的最长上升子序列if( a[i] > a[j] )maxLen[i] = max(maxLen[i],maxLen[j]+1); }cout << * max_element(maxLen+1,maxLen + N + 1 );return 0;
}} //时间复杂度O(N2)

 公共子序列 

题目

        我们称序列Z = < z1, z2, ..., zk >是序列X = < x1, x2, ..., xm >的子序列当且仅当存在 严格上升 的序列< i1, i2, ..., ik >,使得对j = 1, 2, ... ,k, 有xij = zj。比如Z = < a, b, f, c > 是X = < a, b, c, f, b, c >的子序列。
        现在给出两个序列X和Y,你的任务是找到X和Y的最大公共子序列,也就是说要找到一个最长的序列Z,使得Z既是X的子序列也是Y的子序列。

输入

        输入包括多组测试数据。每组数据包括一行,给出两个长度不超过200的字符串,表示两个序列。两个字符串之间由若干个空格隔开。

abcfbc         abfcab
programming    contest 
abcd           mnp

输出

        对每组输入数据,输出一行,给出两个序列的最大公共子序列的长度。

4
2
0

解题思路

输入两个串s1,s2,设MaxLen(i,j)表示:  
s1的左边i个字符形成的子串,与s2左边的j个字符形成的子串的最长公共子序列的长度(i,j从0开始算)
MaxLen(i,j) 就是本题的“状态”
假定 len1 = strlen(s1),len2 = strlen(s2)
那么题目就是要求 MaxLen(len1,len2)
显然:
MaxLen(n,0)  = 0  ( n= 0…len1)
MaxLen(0,n)  = 0  ( n=0…len2)
递推公式:
if ( s1[i-1] == s2[j-1] ) //s1的最左边字符是s1[0]
        MaxLen(i,j) = MaxLen(i-1,j-1) + 1;
else
        MaxLen(i,j) = Max(MaxLen(i,j-1),MaxLen(i-1,j) );
时间复杂度O(mn) m,n是两个字串长度

S1[i-1]!= s2[j-1]时,MaxLen(S1,S2)不会比MaxLen(S1,S2j-1) 和MaxLen(S1i-1,S2)两者之中任何一个小,也不会比两者都大。 

题目解答

#include <iostream>
#include <cstring>
using namespace std;
char sz1[1000];
char sz2[1000];
int maxLen[1000][1000];int main(){while( cin >> sz1 >> sz2 ){int length1 = strlen(sz1);int length2 = strlen(sz2);int nTmp;int i,j;for(i = 0;i <= length1;i++)maxLen[i][0] = 0;for(j = 0;j <= length2;j++)maxLen[0][j] = 0;for(i = 1;i <= length1;i++){for(j = 1; j <= length2;j++){if(sz1[i-1] == sz2[j-1])maxLen[i][j] = maxLen[i-1][j-1] + 1;elsemaxLen[i][j] = max(maxLen[i][j-1],maxLen[i-1][j]);                 }}cout <<  maxLen[length1][length2] << endl;}return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/392125.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【网络】HTTP协议

目录 概述 URL 结构 urlencode&#xff08;URL编码&#xff09; urldecode&#xff08;URL解码&#xff09; 工具网址 HTTP请求 请求行 请求头 请求体 HTTP响应 状态行 响应头 响应体 个人主页&#xff1a;东洛的克莱斯韦克-CSDN博客 概述 HTTP协议是应用层协议…

TCP 三次握手建立连接

一开始&#xff0c;客户端和服务端都处于 CLOSE 状态。先是服务端主动监听某个端口&#xff0c;处于 LISTEN 状态 1. 第一次握手 客户端会随机初始化序号&#xff08;client_isn&#xff09;&#xff0c;将此序号置于 TCP 首部的「序号」字段中&#xff0c;同时把 SYN 标志位置…

略读ArrayList源码

ArrayList是Java集合框架中的一部分&#xff0c;底层是通过数组实现的&#xff0c;可以动态增长和缩减。 一、首先看成员变量 序列化ID定义。在Java中&#xff0c;如果一个类实现了Serializable接口&#xff0c;那么它的serialVersionUID就非常重要了。serialVersionUID用于确…

python 图片爬虫记录

感谢大家的点赞。再补充一点。 对于这个 url https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjEqB5nighYsMZE7kexaVNJfxy3OkRutNEKatksw9u5f-ckHNROLzFyx2Uty3zYWNEaeOmzsljGr3eARiDWaM9DM8G2hPuPf8uZP0NO3kNUCnM2Cjb3ZKtLhJDBwqeR4ElpJ7ID5_wIHGQ/s200 这个url最…

Python进阶 JSON数据,pyecharts制图

目录 json数据格式的转换 什么是json json本质 注意 pyecharts快速入门 画一个最简单的折线图 使用全局配置选项优化折线图 总结 json数据格式的转换 什么是json 一种轻量级的数据交换格式&#xff0c;可以按json指定的格式去组织和封装数据 json本质 带有特定格式的…

汇川技术|Inoproshop基本使用方法:汇川指令库、库文件

哈喽&#xff0c;你好啊&#xff0c;我是雷工&#xff01; 本节熟悉了解汇川常用指令库的分类及概述&#xff0c;了解Inoproshop库文件&#xff1b; 以下为学习笔记。 01 指令简介与分类 可编程控制系统中&#xff0c;使CPU完成某种操作或实现某种功能的命令及多个命令的组合…

CCRC-DSA数据安全评估师:加快构建大网络安全工作格局

7月31日&#xff0c;第十二届ISC.AI互联网安全大会开幕式在北京国家会议中心隆重举行&#xff0c;本次大会以“构建大型安全防护模型&#xff0c;引领安全产业创新”为主题。 中央网络安全和信息化委员会办公室副主任、国家互联网信息办公室副主任王京涛出席并发表了重要讲话。…

语音平台调研

百度DuerOS开放平台 DuerOS是百度推出的对话式人工智能操作系统&#xff0c;即智能语音交互平台。DuerOS的技术架构包含“对话服务”和“技能框架”两大基础协议。两大协议连通起来的对话核心系统、智能设备开放平台和技能开放平台&#xff0c;构成了完整DuerOS的智能生态系统。…

C#初级——字典Dictionary

字典 字典是C#中的一种集合&#xff0c;它存储键值对&#xff0c;并且每个键与一个值相关联。 创建字典 Dictionary<键的类型, 值的类型> 字典名字 new Dictionary<键的类型, 值的类型>(); Dictionary<int, string> dicStudent new Dictionary<int, str…

Javascript常见算法(二)【学习】

动态规划 斐波那契数列&#xff1a; 经典的动态规划问题&#xff0c;每个数是前两个数的和。 斐波那契数列&#xff08;Fibonacci sequence&#xff09;是一个非常著名的数列&#xff0c;其中每个数是前两个数的和&#xff0c;序列以0和1开始。在JavaScript中&#xff0c;有多…

药厂子母钟系统,强抗干扰能力,满足复杂生产环境

在制药行业中&#xff0c;精确的时间同步对于确保药品生产的质量和合规性至关重要。药厂子母钟系统作为一种高度可靠的时间同步解决方案&#xff0c;不仅能够提供准确的时间信息&#xff0c;还具有强大的抗干扰能力&#xff0c;非常适合在复杂的生产环境中使用。本文将详细介绍…

[STM32]HAL库实现自己的BootLoader-BootLoader与OTA-STM32CUBEMX

目录 一、前言 二、BootLoader 三、BootLoader的实现 四、APP程序 五、效果展示 六、拓展 一、前言 听到BootLoader大家一定很熟悉&#xff0c;在很多常见的系统中都会存在BootLoader。本文将介绍BootLoader的含义和简易实现&#xff0c;建议大家学习前掌握些原理基础。 …

YOLOV8替换Lion优化器

YOLOV8替换Lion优化器 1 优化器介绍博客 参考bilibili讲解视频 论文地址&#xff1a;https://arxiv.org/abs/2302.06675 代码地址&#xff1a;https://github.com/google/automl/blob/master/lion/lion_pytorch.py """PyTorch implementation of the Lion …

C++初学(11)

不知不觉就第11篇了QWQ 11.1、指针和自由存储空间 之前提到了计算机程序在存储数据时必须跟踪的3个基本属性&#xff1a; &#xff08;1&#xff09;信息存储在何处&#xff1b; &#xff08;2&#xff09;存储的值为多少&#xff1b; &#xff08;3&#xff09;存储的信息…

未授权访问漏洞(非重点 中)

6.Hadoop 1.在 fofa 使用 port"8088" && app"Hadoop" 获取资源 2.打开后若无需登录,则存在漏洞 7.ActiveMQ 1.在 fofa 使用 body"ActiveMQ" && port"8161" 获取资源 2.打开后若点击登录,默认账户密码为 admin/adm…

【css】使用CSS绘制奥运五环--巴黎奥运

使用CSS绘制奥运五环 在2024年巴黎奥运会期间&#xff0c;本文来使用 CSS 来画一个奥运五环。奥运五环由五个相互交叠的圆环组成&#xff0c;分别代表五大洲。 奥运五环是相互连接的&#xff0c;因此在视觉上会产生重叠效果&#xff0c;这也是实现五环最有挑战性的部分 HTML结…

Rabbitmq的死信队列与如何利用死信队列实现延迟队列

如果设置了队列的 TTL 属性&#xff0c;那么一旦消息过期&#xff0c;就会被队列丢弃(如果配置了死信队列被丢到死信队列中)。而如果仅设置消息的 TTL 属性&#xff0c;即使消息过期&#xff0c;也不一定会被马上丢弃&#xff0c;因为消息是否过期是在即将投递到消费者之前判定…

HTML常用标签和CSS的运用

目录 1.HTML标签 1.1 文档结构标签 1.2 文本格式标签 1.3 列表标签 1.4 链接和媒体标签 1.5 表格标签 1.6 表单标签 1.7 分区和布局标签 1.8 元数据标签 2.css样式 2.1 字体样式 2.2 文本样式 2.3 背景样式 2.4 边框样式 2.5 间距样式 2.6 宽度和高度 2.7 显示…

AI算力租赁是什么,哪些行业会有需求?

一、AI算力租赁的定义与概述 AI算力租赁是指基于人工智能&#xff08;AI&#xff09;应用需求&#xff0c;将所需的计算能力&#xff08;即算力&#xff09;通过租赁服务的方式提供给企业和个人用户。这种服务允许用户根据需要租用人工智能计算资源&#xff0c;如图形处理单元…

星座运势网源码/星座屋接口/星座配对网站PHP程序带采集

星座运势网源码/星座屋接口/星座配对网站PHP程序带采集 演示站&#xff1a; https://xz.wengu8.com/ 程序说明&#xff1a; 1、前端模板PC手机端自适应。 2、每日运势/当月/当年星座运势调用星座屋API接口&#xff0c;每天只采集一次接口&#xff0c;后保存到本地调用本地…