GroupMamba实战:使用GroupMamba实现图像分类任务(二)

文章目录

  • 训练部分
    • 导入项目使用的库
    • 设置随机因子
    • 设置全局参数
    • 图像预处理与增强
    • 读取数据
    • 设置Loss
    • 设置模型
    • 设置优化器和学习率调整策略
    • 设置混合精度,DP多卡,EMA
    • 定义训练和验证函数
      • 训练函数
      • 验证函数
      • 调用训练和验证方法
  • 运行以及结果查看
  • 测试
  • 完整的代码

在上一篇文章中完成了前期的准备工作,见链接:
GroupMamba实战:使用GroupMamba实现图像分类任务(一)
前期的工作主要是数据的准备,安装库文件,数据增强方式的讲解,模型的介绍和实验效果等内容。接下来,这篇主要是讲解如何训练和测试

训练部分

完成上面的步骤后,就开始train脚本的编写,新建train.py

导入项目使用的库

在train.py导入

import json
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from timm.utils import accuracy, AverageMeter, ModelEma
from sklearn.metrics import classification_report
from timm.data.mixup import Mixup
from timm.loss import SoftTargetCrossEntropy
from models.groupmamba import groupmamba_tiny
from torch.autograd import Variable
from torchvision import datasetstorch.backends.cudnn.benchmark = False
import warningswarnings.filterwarnings("ignore")
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"

当您需要在具有多个GPU的机器上指定用于训练的GPU时,可以通过设置环境变量CUDA_VISIBLE_DEVICES来实现。这个环境变量的值是一个由逗号分隔的GPU索引列表,索引从0开始。例如,如果您的机器上有8块GPU,并且您希望仅使用前两块GPU(即索引为0和1的GPU)进行训练,您应该设置:

os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"

这样,只有索引为0和1的GPU会被系统识别并用于训练。类似地,如果您希望使用第三块(索引为2)和第六块(索引为5)GPU进行训练,您应该相应地设置:

os.environ['CUDA_VISIBLE_DEVICES'] = "2,5"

通过这种方式,您可以灵活地选择任意数量的GPU进行训练,而无需担心其他GPU的干扰。

设置随机因子

def seed_everything(seed=42):# 设置Python的哈希种子os.environ['PYTHONHASHSEED'] = str(seed)# 设置PyTorch的CPU随机种子torch.manual_seed(seed)# 如果使用CUDA,设置CUDA的随机种子if torch.cuda.is_available():torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)  # 如果你的代码在多个GPU上运行# 启用CUDA的确定性行为(对卷积等操作的确定性有帮助)torch.backends.cudnn.benchmark = Falsetorch.backends.cudnn.deterministic = True# 使用示例
seed_everything(42)

这里有一些额外的说明和注意事项:

  1. torch.cuda.manual_seed_all(seed):这个调用是可选的,但如果你在多GPU环境中工作(比如使用DataParallelDistributedDataParallel),它确保所有GPU上的随机操作都将从相同的种子开始。如果你的代码只在一个GPU上运行,这个调用不是必需的,但也不会造成问题。

  2. torch.backends.cudnn.benchmark = False:当设置为True时,cuDNN会在运行时自动选择算法来优化性能。然而,这可能会导致每次运行时的行为不完全相同,因为算法的选择可能会基于输入数据的形状和大小而变化。为了实验的可重复性,最好将其设置为False

  3. 图片加载顺序:虽然设置随机种子有助于确保模型的随机操作(如初始化权重、dropout等)是可重复的,但它本身并不直接控制图片加载的顺序。图片加载顺序通常由数据集加载器(如DataLoader)的shuffle参数控制。如果你想要固定的加载顺序,确保在创建DataLoader时将shuffle=False

  4. 其他随机性来源:请注意,即使你设置了这些随机种子,还可能存在其他随机性来源,如操作系统级别的调度或硬件层面的差异(如GPU的浮点精度差异)。在极端情况下,这些差异可能会影响结果的精确可重复性。然而,在大多数情况下,上述设置应该足以确保实验在相同的软件和环境配置下是可重复的。

设置全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'checkpoints/GroupMamba/'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数model_lr = 1e-4BATCH_SIZE = 16EPOCHS = 300DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')use_amp = True  # 是否使用混合精度use_dp = True  # 是否开启dp方式的多卡训练classes = 12resume = NoneCLIP_GRAD = 5.0Best_ACC = 0  # 记录最高得分use_ema = Falsemodel_ema_decay = 0.9998start_epoch =1seed = 1seed_everything(seed)

创建一个名为 ‘checkpoints/GroupMamba/’ 的文件夹,用于保存训练过程中的模型。如果该文件夹已经存在,则不会再次创建,否则会创建该文件夹。

设置训练模型的全局参数,包括学习率、批次大小、训练轮数、设备选择(是否使用 GPU)、是否使用混合精度、是否开启数据并行等。

注:建议使用GPU,CPU太慢了。

参数的详细解释:

model_lr:学习率,根据实际情况做调整。

BATCH_SIZE:batchsize,根据显卡的大小设置。

EPOCHS:epoch的个数,一般300够用。

use_amp:是否使用混合精度。

use_dp :是否开启dp方式的多卡训练?如果您打算使用多GPU训练将use_dp 设置为 True。

classes:类别个数。

resume:再次训练的模型路径,如果不为None,则表示加载resume指向的模型继续训练。

CLIP_GRAD:梯度的最大范数,在梯度裁剪里设置。

Best_ACC:记录最高ACC得分。

use_ema:是否使用ema,如果没有使用预训练模型,直接打开use_ema会造成不上分的情况。可以先关闭ema训练几个epoch,然后,将训练的权重赋值到resume,再将启用ema

model_ema_decay:设置了EMA的衰减率。衰减率决定了当前模型权重和之前的EMA权重在更新新的EMA权重时的相对贡献。具体来说,每次更新EMA权重时,都会按照以下公式进行:
newemaweight = decay × oldemaweight + ( 1 − decay ) × currentmodelweight \text{newemaweight} = \text{decay} \times \text{oldemaweight} + (1 - \text{decay}) \times \text{currentmodelweight} newemaweight=decay×oldemaweight+(1decay)×currentmodelweight
例如,衰减率被设置为0.9998。这意味着在更新EMA权重时,大约99.98%的权重来自之前的EMA权重,而剩下的0.02%来自当前的模型权重。由于衰减率非常接近1,EMA权重会更多地依赖于之前的EMA权重,而不是当前的模型权重。这有助于平滑模型权重的波动,并减少噪声对最终模型性能的影响。

start_epoch:开始的epoch,默认是1,如果重新训练时,需要给start_epoch重新赋值。

SEED:随机因子,数值可以随意设定,但是设置后,不要随意更改,更改后,图片加载的顺序会改变,影响测试结果。

  file_dir = 'checkpoints/GroupMamba/'

这是存放GroupMamba模型的路径。

图像预处理与增强

   # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5,5),sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])])mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=classes)

数据处理和增强比较简单,加入了随机10度的旋转、高斯模糊、色彩饱和度明亮度的变化、Mixup等比较常用的增强手段,做了Resize和归一化。

 transforms.Normalize(mean=[0.3281186, 0.28937867, 0.20702125], std= [0.09407319, 0.09732835, 0.106712654])

这里设置为计算mean和std。
这里注意下Resize的大小,由于选用的模型输入是224×224的大小,所以要Resize为224×224。

数据预处理流程结合了多种常用的数据增强技术,包括随机旋转、高斯模糊、色彩抖动(ColorJitter)、Resize以及归一化,还引入了Mixup和可能的CutMix技术来进一步增强模型的泛化能力。参数详解:

  • transforms.RandomRotation(10): 随机旋转图像最多10度,有助于模型学习旋转不变性。
  • transforms.GaussianBlur(kernel_size=(5,5), sigma=(0.1, 3.0)): 应用高斯模糊,模拟图像的模糊情况,增强模型对模糊图像的鲁棒性。
  • transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5): 调整图像的亮度、对比度和饱和度,增加数据的多样性。
  • transforms.Resize((224, 224)): 将图像大小调整为224x224,以符合模型的输入要求。
  • transforms.ToTensor(): 将PIL Image或NumPy ndarray转换为FloatTensor,并归一化到[0.0, 1.0]。
  • transforms.Normalize(mean, std): 使用指定的均值和标准差对图像进行归一化处理,有助于模型训练。
 mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=classes)

定义了一个 Mixup 函数。Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。

Mixup 是一种正则化技术,通过混合输入数据和它们的标签来增强模型的泛化能力。在您的代码中,Mixup 类还包含了 CutMix 的参数,但具体实现可能需要根据您使用的库(如 timm 或自定义实现)来确定。参数详解:

mixup_alpha: Mixup 中用于Beta分布的α参数,控制混合强度的分布。 cutmix_alpha: CutMix
中用于Beta分布的α参数,同样控制混合强度的分布。 cutmix_minmax: CutMix 中裁剪区域的最小和最大比例,但在这里设为
None,可能表示使用默认的或根据 cutmix_alpha 自动计算的比例。 prob: 应用Mixup或CutMix的概率。
switch_prob: 在Mixup和CutMix之间切换的概率(如果Mixup和CutMix都被启用)。 mode:
指定Mixup是在整个批次上进行还是在单个样本之间进行。 label_smoothing: 标签平滑参数,用于减少模型对硬标签的过度自信。
num_classes: 类别数,用于标签平滑计算。

读取数据

   # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE,num_workers=8,pin_memory=True,shuffle=True,drop_last=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)
  • 使用pytorch默认读取数据的方式,然后将dataset_train.class_to_idx打印出来,预测的时候要用到。

  • 对于train_loader ,drop_last设置为True,因为使用了Mixup数据增强,必须保证每个batch里面的图片个数为偶数(不能为零),如果最后一个batch里面的图片为奇数,则会报错,所以舍弃最后batch的迭代,pin_memory设置为True,可以加快运行速度,num_workers多进程加载图像,不要超过CPU 的核数。

  • 将dataset_train.class_to_idx保存到txt文件或者json文件中。

class_to_idx的结果:

{'Black-grass': 0, 'Charlock': 1, 'Cleavers': 2, 'Common Chickweed': 3, 'Common wheat': 4, 'Fat Hen': 5, 'Loose Silky-bent': 6, 'Maize': 7, 'Scentless Mayweed': 8, 'Shepherds Purse': 9, 'Small-flowered Cranesbill': 10, 'Sugar beet': 11}

设置Loss

# 设置loss函数  
# 训练的loss函数为SoftTargetCrossEntropy,用于处理具有软目标(soft targets)的训练场景  
criterion_train = SoftTargetCrossEntropy()  # 验证的loss函数为nn.CrossEntropyLoss(),适用于多分类问题的标准交叉熵损失  
criterion_val = torch.nn.CrossEntropyLoss() 

设置loss函数,训练的loss为:SoftTargetCrossEntropy,验证的loss:nn.CrossEntropyLoss()。

设置模型

    # 设置模型model_ft = groupmamba_tiny(pretrained=False)print(model_ft)num_fr = model_ft.head.in_featuresmodel_ft.head = nn.Linear(num_fr, classes)print(model_ft)if resume:model = torch.load(resume)print(model['state_dict'].keys())model_ft.load_state_dict(model['state_dict'])Best_ACC = model['Best_ACC']start_epoch = model['epoch'] + 1model_ft.to(DEVICE)
  • 设置模型为groupmamba_tiny,获取分类模块的in_features,然后,修改为数据集的类别,也就是classes。

  • 如果resume设置为已经训练的模型的路径,则加载模型接着resume指向的模型接着训练,使用模型里的Best_ACC初始化Best_ACC,使用epoch参数初始化start_epoch。

  • 如果模型输出是classes的长度,则表示修改正确了。

在这里插入图片描述

设置优化器和学习率调整策略

   # 选择简单暴力的Adam优化器,学习率调低optimizer = optim.AdamW(model_ft.parameters(),lr=model_lr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-6)
  • 优化器设置为adamW。
  • 学习率调整策略选择为余弦退火。

设置混合精度,DP多卡,EMA

    if use_amp:scaler = torch.cuda.amp.GradScaler()if torch.cuda.device_count() > 1 and use_dp:print("Let's use", torch.cuda.device_count(), "GPUs!")model_ft = torch.nn.DataParallel(model_ft)if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device=DEVICE,resume=resume)else:model_ema=None

定义训练和验证函数

训练函数

def train(model, device, train_loader, optimizer, epoch,model_ema):model.train()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)samples, targets = mixup_fn(data, target)output = model(samples)optimizer.zero_grad()if use_amp:with torch.cuda.amp.autocast():loss = torch.nan_to_num(criterion_train(output, targets))scaler.scale(loss).backward()torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)# Unscales gradients and calls# or skips optimizer.step()scaler.step(optimizer)# Updates the scale for next iterationscaler.update()else:loss = criterion_train(output, targets)torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD)loss.backward()optimizer.step()if model_ema is not None:model_ema.update(model)lr = optimizer.state_dict()['param_groups'][0]['lr']loss_meter.update(loss.item(), target.size(0))acc1, acc5 = accuracy(output, target, topk=(1, 5))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))if (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLR:{:.9f}'.format(epoch, (batch_idx + 1) * train_loader.batch_size, len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item(), lr))ave_loss =loss_meter.avgacc = acc1_meter.avgprint('epoch:{}\tloss:{:.2f}\tacc:{:.2f}'.format(epoch, ave_loss, acc))return ave_loss, acc

训练的主要步骤:

1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。

2、进入循环,将data和target放入device上,non_blocking设置为True。如果pin_memory=True的话,将数据放入GPU的时候,也应该把non_blocking打开,这样就只把数据放入GPU而不取出,访问时间会大大减少。
如果pin_memory=False时,则将non_blocking设置为False。

3、将数据输入mixup_fn生成mixup数据。

4、将第三部生成的mixup数据输入model,输出预测结果,然后再计算loss。

5、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。

6、如果使用混合精度,则

  • with torch.cuda.amp.autocast(),开启混合精度。
  • 计算loss。torch.nan_to_num将输入中的NaN、正无穷大和负无穷大替换为NaN、posinf和neginf。默认情况下,nan会被替换为零,正无穷大会被替换为输入的dtype所能表示的最大有限值,负无穷大会被替换为输入的dtype所能表示的最小有限值。
  • scaler.scale(loss).backward(),梯度放大。
  • torch.nn.utils.clip_grad_norm_,梯度裁剪,放置梯度爆炸。
  • scaler.step(optimizer) ,首先把梯度值unscale回来,如果梯度值不是inf或NaN,则调用optimizer.step()来更新权重,否则,忽略step调用,从而保证权重不更新。
  • 更新下一次迭代的scaler。

否则,直接反向传播求梯度。torch.nn.utils.clip_grad_norm_函数执行梯度裁剪,防止梯度爆炸。

7、如果use_ema为True,则执行model_ema的updata函数,更新模型。

8、 torch.cuda.synchronize(),等待上面所有的操作执行完成。

9、接下来,更新loss,ACC1,ACC5的值。

等待一个epoch训练完成后,计算平均loss和平均acc

验证函数

# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()loss_meter = AverageMeter()acc1_meter = AverageMeter()acc5_meter = AverageMeter()total_num = len(test_loader.dataset)print(total_num, len(test_loader))val_list = []pred_list = []for data, target in test_loader:for t in target:val_list.append(t.data.item())data, target = data.to(device, non_blocking=True), target.to(device, non_blocking=True)output = model(data)loss = criterion_val(output, target)_, pred = torch.max(output.data, 1)for p in pred:pred_list.append(p.data.item())acc1, acc5 = accuracy(output, target, topk=(1, 5))loss_meter.update(loss.item(), target.size(0))acc1_meter.update(acc1.item(), target.size(0))acc5_meter.update(acc5.item(), target.size(0))acc = acc1_meter.avgprint('\nVal set: Average loss: {:.4f}\tAcc1:{:.3f}%\tAcc5:{:.3f}%\n'.format(loss_meter.avg, acc, acc5_meter.avg))if acc > Best_ACC:if isinstance(model, torch.nn.DataParallel):torch.save(model.module, file_dir + '/' + 'best.pth')else:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accif isinstance(model, torch.nn.DataParallel):state = {'epoch': epoch,'state_dict': model.module.state_dict(),'Best_ACC': Best_ACC}if use_ema:state['state_dict_ema'] = model.module.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')else:state = {'epoch': epoch,'state_dict': model.state_dict(),'Best_ACC': Best_ACC}if use_ema:state['state_dict_ema'] = model.state_dict()torch.save(state, file_dir + "/" + 'model_' + str(epoch) + '_' + str(round(acc, 3)) + '.pth')return val_list, pred_list, loss_meter.avg, acc

验证集和训练集大致相似,主要步骤:

1、在val的函数上面添加@torch.no_grad(),作用:所有计算得出的tensor的requires_grad都自动设置为False。即使一个tensor(命名为x)的requires_grad = True,在with torch.no_grad计算,由x得到的新tensor(命名为w-标量)requires_grad也为False,且grad_fn也为None,即不会对w求导。

2、定义参数:
loss_meter: 测试的loss
acc1_meter:top1的ACC。
acc5_meter:top5的ACC。
total_num:总的验证集的数量。
val_list:验证集的label。
pred_list:预测的label。

3、进入循环,迭代test_loader:

将label保存到val_list。

将data和target放入device上,non_blocking设置为True。

将data输入到model中,求出预测值,然后输入到loss函数中,求出loss。

调用torch.max函数,将预测值转为对应的label。

将输出的预测值的label存入pred_list。

调用accuracy函数计算ACC1和ACC5

更新loss_meter、acc1_meter、acc5_meter的参数。

4、本次epoch循环完成后,求得本次epoch的acc、loss。
5、接下来是保存模型的逻辑
如果ACC比Best_ACC高,则保存best模型
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module。
否则直接保存model。
注:保存best模型,我们采用保存整个模型的方式,这样保存的模型包含网络结构,在预测的时候,就不用再重新定义网络了。

6、接下来保存每个epoch的模型。
判断模型是否为DP方式训练的模型。

如果是DP方式训练的模型,模型参数放在model.module,则需要保存model.module.state_dict()。

新建个字典,放置Best_ACC、epoch和 model.module.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。
否则,新建个字典,放置Best_ACC、epoch和 model.state_dict()等参数。然后将这个字典保存。判断是否是使用EMA,如果使用,则还需要保存一份ema的权重。

注意:对于每个epoch的模型只保存了state_dict参数,没有保存整个模型文件。

调用训练和验证方法

    # 训练与验证is_set_lr = Falselog_dir = {}train_loss_list, val_loss_list, train_acc_list, val_acc_list, epoch_list = [], [], [], [], []if resume and os.path.isfile(file_dir+"result.json"):with open(file_dir+'result.json', 'r', encoding='utf-8') as file:logs = json.load(file)train_acc_list = logs['train_acc']train_loss_list = logs['train_loss']val_acc_list = logs['val_acc']val_loss_list = logs['val_loss']epoch_list = logs['epoch_list']for epoch in range(start_epoch, EPOCHS + 1):epoch_list.append(epoch)log_dir['epoch_list'] = epoch_listtrain_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema)train_loss_list.append(train_loss)train_acc_list.append(train_acc)log_dir['train_acc'] = train_acc_listlog_dir['train_loss'] = train_loss_listif use_ema:val_list, pred_list, val_loss, val_acc = val(model_ema.ema, DEVICE, test_loader)else:val_list, pred_list, val_loss, val_acc = val(model_ft, DEVICE, test_loader)val_loss_list.append(val_loss)val_acc_list.append(val_acc)log_dir['val_acc'] = val_acc_listlog_dir['val_loss'] = val_loss_listlog_dir['best_acc'] = Best_ACCwith open(file_dir + '/result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(log_dir))print(classification_report(val_list, pred_list, target_names=dataset_train.class_to_idx))if epoch < 600:cosine_schedule.step()else:if not is_set_lr:for param_group in optimizer.param_groups:param_group["lr"] = 1e-6is_set_lr = Truefig = plt.figure(1)plt.plot(epoch_list, train_loss_list, 'r-', label=u'Train Loss')# 显示图例plt.plot(epoch_list, val_loss_list, 'b-', label=u'Val Loss')plt.legend(["Train Loss", "Val Loss"], loc="upper right")plt.xlabel(u'epoch')plt.ylabel(u'loss')plt.title('Model Loss ')plt.savefig(file_dir + "/loss.png")plt.close(1)fig2 = plt.figure(2)plt.plot(epoch_list, train_acc_list, 'r-', label=u'Train Acc')plt.plot(epoch_list, val_acc_list, 'b-', label=u'Val Acc')plt.legend(["Train Acc", "Val Acc"], loc="lower right")plt.title("Model Acc")plt.ylabel("acc")plt.xlabel("epoch")plt.savefig(file_dir + "/acc.png")plt.close(2)

调用训练函数和验证函数的主要步骤:

1、定义参数:

  • is_set_lr,是否已经设置了学习率,当epoch大于一定的次数后,会将学习率设置到一定的值,并将其置为True。
  • log_dir:记录log用的,将有用的信息保存到字典中,然后转为json保存起来。
  • train_loss_list:保存每个epoch的训练loss。
  • val_loss_list:保存每个epoch的验证loss。
  • train_acc_list:保存每个epoch的训练acc。
  • val_acc_list:保存么每个epoch的验证acc。
  • epoch_list:存放每个epoch的值。

如果是接着上次的断点继续训练则读取log文件,然后把log取出来,赋值到对应的list上。
循环epoch

1、调用train函数,得到 train_loss, train_acc,并将分别放入train_loss_list,train_acc_list,然后存入到logdir字典中。

2、调用验证函数,判断是否使用EMA?
如果使用EMA,则传入model_ema.ema,否则,传入model_ft。得到val_list, pred_list, val_loss, val_acc。将val_loss, val_acc分别放入val_loss_list和val_acc_list中,然后存入到logdir字典中。

3、保存log。

4、打印本次的测试报告。

5、如果epoch大于600,将学习率设置为固定的1e-6。

6、绘制loss曲线和acc曲线。

运行以及结果查看

完成上面的所有代码就可以开始运行了。点击右键,然后选择“run train.py”即可,运行结果如下:

在这里插入图片描述

在每个epoch测试完成之后,打印验证集的acc、recall等指标。

GroupMamba测试结果:

在这里插入图片描述
在这里插入图片描述

测试

测试,我们采用一种通用的方式。

测试集存放的目录如下图:

GroupMamba_Demo
├─test
│  ├─1.jpg
│  ├─2.jpg
│  ├─3.jpg
│  ├ ......
└─test.py
import torch.utils.data.distributed
import torchvision.transforms as transforms
from PIL import Image
from torch.autograd import Variable
import osclasses = ('Black-grass', 'Charlock', 'Cleavers', 'Common Chickweed','Common wheat', 'Fat Hen', 'Loose Silky-bent','Maize', 'Scentless Mayweed', 'Shepherds Purse', 'Small-flowered Cranesbill', 'Sugar beet')
transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])
])DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model=torch.load('checkpoints/GroupMamba/best.pth')
model.eval()
model.to(DEVICE)path = 'test/'
testList = os.listdir(path)
for file in testList:img = Image.open(path + file)img = transform_test(img)img.unsqueeze_(0)img = Variable(img).to(DEVICE)out = model(img)# Predict_, pred = torch.max(out.data, 1)print('Image Name:{},predict:{}'.format(file, classes[pred.data.item()]))

测试的主要逻辑:

1、定义类别,这个类别的顺序和训练时的类别顺序对应,一定不要改变顺序!!!!

2、定义transforms,transforms和验证集的transforms一样即可,别做数据增强。

3、 torch.load加载model,然后将模型放在DEVICE里,

4、循环 读取图片并预测图片的类别,在这里注意,读取图片用PIL库的Image。不要用cv2,transforms不支持。循环里面的主要逻辑:

  • 使用Image.open读取图片
  • 使用transform_test对图片做归一化和标椎化。
  • img.unsqueeze_(0) 增加一个维度,由(3,224,224)变为(1,3,224,224)
  • Variable(img).to(DEVICE):将数据放入DEVICE中。
  • model(img):执行预测。
  • _, pred = torch.max(out.data, 1):获取预测值的最大下角标。

运行结果:

在这里插入图片描述

完整的代码

完整的代码:

https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/89601954

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/392553.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

26集 ESP32 AIchat启动代码分析-《MCU嵌入式AI开发笔记》

26集 ESP32 AIchat启动代码分析-《MCU嵌入式AI开发笔记》 这集我们分析代码如何组织起来&#xff0c;如何编译 先用sourceinsight把代码加进工程。 新建一个sourceinsight工程&#xff0c;把AI-CHAT代码加进来&#xff0c;之后把ESP IDF代码加进来&#xff0c;之后把ESP-ADF加…

大语言模型(LLM)文本预处理实战

大语言模型&#xff08;LLM&#xff09;文本预处理实战 文章目录 大语言模型&#xff08;LLM&#xff09;文本预处理实战2.1 理解词嵌入2.2 文本分词2.3 将 token 转换为 token ID2.4 添加特殊上下文 token2.5 字节对编码 (BytePair Encoding, BPE)2.6 使用滑动窗口进行数据采样…

sql注入部分总结和复现

一个端口对应一个服务 联合查询注入 所有的程序中&#xff0c;单双引号必须成对出现 需要从这个引号里面逃出来 在后面查询内容 ?id1 要查库名&#xff0c;表名&#xff0c;列名。但是联合查询要知道有多少列&#xff0c;所以通过order by 去查询 order by # 通过二分法…

Cartopy简介和安装

Cartopy 是一个开源免费的第三方 Python 扩展包&#xff0c;由英国气象办公室的科学家们开发&#xff0c;支持 Python 2.7 和 Python 3&#xff0c;致力于使用最简单直观的方式生成地图&#xff0c;并提供对 matplotlib 友好的协作接口。初学Cartopy&#xff0c;欢迎指正&#…

算法回忆录(3)

11. 假设有7个物品&#xff0c;它们的重量和价值如下表所示。若这些物品均不能被分割&#xff0c;且背包容量M&#xff1d;150&#xff0c;设计算法求解怎么装才能使得获取的价值最大&#xff1f;请写出伪代码。 #include <stdio.h>#define MAX_ITEMS 100 #define …

新手小白嵌入式单片机教程,ESP32

1.什么是ESP32。 ESP32是一款由乐鑫信息科技&#xff08;Espressif Systems&#xff09;推出的高度集成的低功耗系统级芯片&#xff08;SoC&#xff09;&#xff0c;它结合了双核处理器、无线通信、低功耗特性和丰富的外设&#xff0c;特别适用于各种物联网&#xff08;IoT&am…

Robot Operating System——深度解析单线程执行器(SingleThreadedExecutor)执行逻辑

大纲 创建SingleThreadedExecutor新增Nodeadd_nodetrigger_entity_recollectcollect_entities 自旋等待get_next_executablewait_for_workget_next_ready_executableTimerSubscriptionServiceClientWaitableAnyExecutable execute_any_executable 参考资料 在ROS2中&#xff0c…

python 爬虫入门实战——爬取维基百科“百科全书”词条页面内链

1. 简述 本次爬取维基百科“百科全书”词条页面内链&#xff0c;仅发送一次请求&#xff0c;获取一个 html 页面&#xff0c;同时不包含应对反爬虫的知识&#xff0c;仅包含最基础的网页爬取、数据清洗、存储为 csv 文件。 爬取网址 url 为 “https://zh.wikipedia.org/wiki/…

数据结构:基于顺序表实现通讯录系统(含源码)

目录 一、前言 二、各个功能的实现 2.1 初始化通讯录 2.2 添加通讯录数据 2.3 查找通讯录数据 2.4 删除通讯录数据 2.5 修改通讯录数据 2.6 展示通讯录数据​编辑 2.7 销毁通讯录数据 三、添加菜单和测试 四、完整源码 sxb.h sxb.c contact.h contact.c test.c 一、前…

【隐私计算篇】混淆电路之深入浅出

入门隐私计算的阶段&#xff0c;一般都会涉及对于混淆电路的学习&#xff0c;这是因为混淆电路是多方安全计算中的基础密码原语&#xff0c;也是隐私保护中重要的技术。为了帮助更好地理解混淆电路的原理&#xff0c;今天对其进行原理以及相关优化手段进行解析和分享。 1. 混淆…

不同角色路由权限配置(六)

一、启用方式 配置开启config/config.ts。同时需要 src/access.ts 提供权限配置 export default {access: {},// access 插件依赖 initial State 所以需要同时开启initialState: {}, };这里以扩展的路由配置为例&#xff0c;配置只有admin权限才能查看的页面 1、在src/acces…

前端web开发HTML+CSS3+移动web(0基础,超详细)——第3天

目录 一&#xff0c;列表-无序和有序的定义列表 二&#xff0c;表格-基本使用与表格结构标签 三&#xff0c;合并单元格 四&#xff0c;表单-input标签 五&#xff0c;表单-下拉菜单 六&#xff0c;表单-文本域 七&#xff0c;表单-label标签 八&#xff0c;表单-按钮 …

【已解决】页面操作系统功能,诡异报错500nginx错误

【已解决】页面操作系统功能&#xff0c;诡异报错500nginx错误&#xff0c;后台没有任何报错信息 不知道啥原因 清理了浏览器缓存 也没有效果 还有一个表现情况&#xff0c;同样的操作&#xff0c;有时可以又是不行 因为报错ng的代理问题&#xff0c;检查了ng配置 后续经过同…

【C/C++】C语言和C++实现Stack(栈)对比

我们初步了解了C&#xff0c;也用C语言实现过栈&#xff0c;就我们当前所更新过的有关C学习内容以栈为例子&#xff0c;来简单对比一下C语言和C。 1.C中栈的实现 栈的C语言实现在【数据结构】栈的概念、结构和实现详解-CSDN博客 &#xff0c;下面是C实现的栈&#xff0c; 在St…

OD C卷 - 多线段数据压缩

多段 线 数据压缩 &#xff08;200&#xff09; 如图中每个方格为一个像素&#xff08;i&#xff0c;j&#xff09;&#xff0c;线的走向只能水平、垂直、倾斜45度&#xff1b;图中线段表示为(2, 8)、&#xff08;3,7&#xff09;、&#xff08;3, 6&#xff09;、&#xff08…

学习STM32(2)--STM32单片机GPIO应用

目录 1 引 言 2 实验目的 3 实验内容 3.1掌握STM32F103的GPIO控制 3.1.1 GPIO的分组 3.1.2 GPIO的常用功能 3.1.3 STM32单片机GPIO位结构 3.1.4 STM32单片机GPIO工作模式 3.1.5 STM32的GPIO 输出-点亮LED编程要点 使用GPIO时&#xff0c;按下面步骤进行&#xff1…

部署服务器项目及发布

当技术总监直接丢给我一个服务器账号密码时&#xff0c;我该怎么完成映射本机&#xff1b;配置网关&#xff1b;配置代理和发布项目呢&#xff1f; 我使用的是putty远程登录到服务器 输入ip后&#xff0c;点open 输入账号密码 登录的账号如果不是root&#xff1b;使用sudo su…

sqllab靶场练习第1~15关

1、第一关 代码解析 if(isset($_GET[id]))//判断获取的id字段是否为空 { $id$_GET[id]; //logging the connection parameters to a file for analysis. $fpfopen(result.txt,a);//打开这个文件&#xff0c;记录操作的日志 fwrite($fp,ID:.$id."\n"); fclose($fp);…

【C++高阶】深入理解C++异常处理机制:从try到catch的全面解析

&#x1f4dd;个人主页&#x1f339;&#xff1a;Eternity._ ⏩收录专栏⏪&#xff1a;C “ 登神长阶 ” &#x1f921;往期回顾&#x1f921;&#xff1a;Lambda表达式 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; ❀C异常 &#x1f4d2;1. C异常概念…

WPF学习(3)- WrapPanel控件(瀑布流布局)+DockPanel控件(停靠布局)

WrapPanel控件&#xff08;瀑布流布局&#xff09; WrapPanel控件表示将其子控件从左到右的顺序排列&#xff0c;如果第一行显示不了&#xff0c;则自动换至第二行&#xff0c;继续显示剩余的子控件。我们来看看它的结构定义&#xff1a; public class WrapPanel : Panel {pub…