吴恩达机器学习COURSE1 WEEK2

COURSE1 WEEK2

多维特征

在线性回归中,往往特征不止一个,而是具有多维特征

例如,在预测房价的例子中,我们知道更多的信息:

x 1 x_1 x1:房屋的面积

x 2 x_2 x2:卧室的数目

x 3 x_3 x3:楼层数目

x 4 x_4 x4:房屋的年限

因此,我们每一个特征 x ( i ) x^{(i)} x(i) 的表示变成了向量形式, x j ( i ) x^{(i)}_j xj(i) 表示具体的某的 特征( i 行 j 列)

从而,我们的线性模型公式转化为:
f w , b ( x ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + w 4 x 4 + b f_{w,b}(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b fw,b(x)=w1x1+w2x2+w3x3+w4x4+b
其中, w i w_i wi可以理解为第 i i i 个特征对目标的贡献程度

进而,推广到更一般的形式:
f w , b ( x ) = w 1 x 1 + w 2 x 2 + ⋯ + w n x n + b f_{w,b}(x) = w_1x_1 + w_2x_2 + \dots + w_nx_n + b fw,b(x)=w1x1+w2x2++wnxn+b
将所有的参数 w i w_i wi组合在一起,形成向量 w ⃗ = [ w 1 , w 2 , … , w n ] \vec {w} = [w_1, w_2, \dots, w_n] w =[w1,w2,,wn],将所有的特征 x i x_i xi 组合在一起,形成一个向量 x ⃗ = [ x 1 , x 2 , … , x n ] \vec{x} = [\boldsymbol x_1, \boldsymbol x_2, \dots, \boldsymbol x_n] x =[x1,x2,,xn]

从而,将模型形式可以写为:
f w ⃗ , b ( x ⃗ ) = w ⃗ ⋅ x ⃗ + b f_{\vec w, b}(\vec x) = \vec w \cdot \vec x + b fw ,b(x )=w x +b
其中, ⋅ \cdot 代表点乘

这种具有多个特征的线性回归模型叫做多元线性回归

向量化

在多元线性回归中,使用向量化的方法,可以使得代码的编写更加简洁,实现更加快速

如果不使用向量化,在代码的编写中,我们需要计算以下结果:
f w ⃗ , b ( x ⃗ ) = ∑ j = 1 n w j x j + b f_{\vec w, b}(\vec x) = \sum _{j=1}^{n}w_jx_j + b fw ,b(x )=j=1nwjxj+b
n n n 较大时,需要较大的计算量,实现较为复杂

f = 0
for j in range(n):f = f + w[j] * x[j]
f = f + b

所谓向量化,就是把数据都看作向量,在每一步的计算中使用向量的计算。例如多元线性回归模型,将 w w w 和 特征 x x x 进行点乘计算

f = np.dot(w, x) + b

向量化的好处:

  • 使得代码更加简洁
  • 运算速度更快

多元线性回归的梯度下降

与单变量线性回归的梯度下降相似,唯一不同的是,此时要把参数 w w w 当作是一个向量 w ⃗ \vec w w ,因此得到参数更新的公式:
w j = w j − α ∂ ∂ w j J ( w ⃗ , b ) b = b − α ∂ ∂ b J ( w ⃗ , b ) w_j = w_j - \alpha \frac{\partial}{\partial w_j}J(\vec w, b) \\ b = b - \alpha \frac{\partial}{\partial b}J(\vec w, b) wj=wjαwjJ(w ,b)b=bαbJ(w ,b)
在这里插入图片描述

正规方程

正规方程即最小二乘法

由于我们要求解损失函数最小的时候对应的参数值,所以不妨将损失函数看作是参数的函数,然后对损失函数求一阶导函数,令一阶导函数等于 0,求解其极小值点,就对应着最优的参数

特点:

  • 仅适用于线性回归
  • 解决最小化参数问题(同梯度下降算法),但是不需要迭代
  • 当特征较多时( > 10000),运行速度较慢

只要特征变量的数目并不大,标准方程是一个很好的计算参数的替代方法。具体地说,只要特征变量数量小于一万,通常使用标准方程法,而不使用梯度下降法。

特征缩放

使用特征缩放的方法,能够使得梯度下降算法的运行速度得到提升

所谓特征缩放,就是在进行模型训练之前,对数据进行归一化操作

例如,以房价预测为例,特征又房屋面积 x 1 x_1 x1 和卧室数量 x 2 x_2 x2,因此:
p r i c e ^ = w 1 x 1 + x 2 x 2 + b \hat {price} = w_1x_1 + x_2x_2 + b price^=w1x1+x2x2+b
其中, x 1 ∈ [ 300 , 2000 ] , x 2 ∈ [ 0 , 5 ] x_1 \in [300,2000],x_2 \in [0, 5] x1[300,2000]x2[0,5]

数据集:

$x_1 = 2000, x_2 = 5, price = $500K$

由此可以看出,我们的参数 w 1 w_1 w1应该较小, w 2 w_2 w2 应该较大

即,对于一个好的模型来说:

  • 当特征的可能指较小时,其参数的合理值将相对较大
  • 当特征的可能指较大时,其参数的合理值将相对较小

当每个特征的取值范围相差较大时,特征关系与损失函数图像如下:
在这里插入图片描述

如右侧的损失函数梯度图,当我们使用梯度下降算法时,如果学习率设置不当,算法会来回左右横跳动,经过很长一段时间才会收敛到最优值

在这里插入图片描述

当我们使用特征缩放时,即将 x 1 x_1 x1 x 2 x_2 x2进行重新标度,归一化到区间 [ 0 , 1 ] [0,1] [0,1]内,保证了两个特征拥有一个可比较的范围,从而使得损失函数梯度图更像一个圆形,便于算法能够快速收敛到最优点
在这里插入图片描述

特征缩放方法

特征缩放的目的是将一列数据变化到某个固定区间(范围)中

均值归一化

将数据归一化到区间 [ − 1 , 1 ] [-1,1] [1,1]
x = x − μ x m a x − x m i n x = \frac{x - \mu}{x_{max} - x_{min}} x=xmaxxminxμ
其中, μ \mu μ 是数据 x x x 的均值
在这里插入图片描述

Z-score 归一化

即,将数据转化为均值为0,标准差为1的分布
x = x − μ σ x = \frac{x - \mu}{\sigma } x=σxμ
其中, μ \mu μ 是数据的均值, σ \sigma σ 是标准差
在这里插入图片描述

特征缩放的好坏,具体取决于所有特征进行特征缩放后的取值范围是否尽量一致,以保证梯度下降算法的有效进行

梯度下降法则

如何判断梯度下降是否收敛

一般而言,在模型训练阶段,随着迭代次数的进行,损失值如下图所示:
在这里插入图片描述

可以看到的是,当迭代次数大于300时,曲线接近平行,下降的趋势非常平缓,此时意味着我们的梯度下降开始收敛了

通常,可以使用 epsilon法进行自动收敛测试,即设置收敛阈值 ε = 0.001 \varepsilon = 0.001 ε=0.001,当损失值下降幅度小于阈值时,即认为算法开始收敛,但从实际来看,要想确定一个正确的阈值是非常困难的

如何设置学习率

如果学习率设置过大,则最终结果不容易收敛

如果学习率设置太小,则会导致算法运行较长时间
通过绘制损失函数与迭代次数关系的图像,如果损失函数出现时而下降,时而上升,即不是一直下降的趋势,那么则表明学习率的设置可能较大(也可能是代码存在错误

因此,在实际工作中,一般会选择一系列的值不断去尝试,且在尝试的过程中,只对模型的部分数据进行有限的迭代次数,通过对比来选择最优的学习率

多项式回归

特征工程

在实际问题中,使用的模型往往比较复杂,因此有时需要利用特征工程的方法来对模型加入一些重要的特征

例如,在预测房价时,目前存在临街长度 x 1 x_1 x1 和深度 x 2 x_2 x2,因此房价预测模型为:
f w ⃗ , b ( x ⃗ ) = w 1 x 1 + w 2 x 2 + b f_{\vec w, b}(\vec x) = w_1x_1 + w_2x_2 + b fw ,b(x )=w1x1+w2x2+b
在这里插入图片描述

但是在实际中,根据生活经验,使用房屋面积作为单特征可能会更好的帮助我们进行预测,因此引入第三个变量房屋面积 x 3 x_3 x3,且 x 3 = x 1 x 2 x_3 = x_1x_2 x3=x1x2,从而我们的模型转化为:
f w ⃗ , b ( x ⃗ ) = w 1 x 1 + w 2 x 2 + w 3 x 3 + b f_{\vec w, b}(\vec x) = w_1x_1 + w_2x_2 +w_3x_3 + b fw ,b(x )=w1x1+w2x2+w3x3+b
这种方法叫做创建新特征

多元线性回归+特征工程

将多元线性回归与特征工程的思想结合起来,就是多项式回归的算法,这可以使我们获得更好的数据模型

对于通过面积来预测房价的例子,根据数据集的分布情况,可以看出如果使用二次函数来拟合,效果可能会更好,如下图:

在这里插入图片描述

但是考虑到二次函数在达到最高点之后会再次下降,而实际情况中房屋面积越大,价格应该是越高,因此对模型进行调整,改为三次函数模型

在这里插入图片描述

同时,在加入高次幂时,要记得对使用特征缩放得方法,保证我们的梯度下降算法有效的进行

除此之外,由于观察到随着面积的增长,价格增长的趋势不在那么陡峭,因此也可以考虑使用平方根函数

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/393761.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序 - 自定义计数器 - 优化(键盘输入校验)

微信小程序通过自定义组件,实现计数器值的增加、减少、清零、最大最小值限定、禁用等操作。通过按钮事件触发方式,更新计数器的值,并修改相关联的其它变量。通过提升用户体验,对计数器进行优化设计,使用户操作更加便捷…

蜂窝网络架构

2G/3G 4G eNB RF-RRU eCPRI RRU-BBU 光纤 5G From 38.300 AMF处理信令等,UPF 用户面,后面还有SMF

医院不良事件监测预警上报系统,PHP不良事件管理系统源码

不良事件上报系统,支持医院进行10大类医疗安全(不良)事件的上报管理;帮助医院管理部门更好把控不良事件的发生趋势,分析医院内部潜在的问题和风险,采取适当的管理措施,有效加强质量控制&#xf…

MySQL总体功能

基于Innodb存储引擎的讨论 MySQL 核心功能 功能解决的问题ACID模型数据并发访问,和奔溃恢复安全问题,一致性&奔溃恢复索引数据查询效率问题备份容错设计,解决硬件错误带来的问题复制数据迁移监控执行数据库操作的异常记录

JavaEE: wait(等待) / notify (通知)

文章目录 wait(等待) / notify (通知)总结 wait(等待) / notify (通知) 线程在操作系统上的调度是随机的~ 那么我们想要控制线程之间执行某个逻辑的先后顺序,那该咋办呢? 可以让后执行的逻辑,使用wait, 先执行的线程,在完成某些逻辑之后,通过notify来唤醒对应的wait. 另外,通…

C++-类与对象基础

一,类的定义 1.1类定义格式 class为定义类的关键字,Stack为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。类体中内容称为mian类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者…

【nginx】centos7安装并配置开机自启

【nginx】配置开机自启 1.nginx配置开机自启 安装完成nginx之后 vim /lib/systemd/system/nginx.service[Unit] Descriptionnginx Afternetwork.target[Service] Typeforking ExecStart/usr/local/nginx/sbin/nginx -c /usr/local/nginx/conf/nginx.conf ExecReload/usr/loc…

理解Spring框架2:容器IOC

理解Spring框架2:容器IOC (qq.com)

ViP-LLaVA: Making Large Multimodal Models Understand Arbitrary Visual Prompts

发表时间:cvpr2024 论文链接:https://readpaper.com/pdf-annotate/note?pdfId2357936887983293952&noteId2426262228488986112 作者单位:University of Wisconsin–Madison Motivation:现在的多模态模型都关注整张图像的理…

torch量化接口深度解读-eager模式-fx模式

一、定义 接口总结量化模式解读 二、实现 接口总结 1. PyTorch提供了三种不同的量化模式:Eager模式量化、FX图模式量化(维护)和PyTorch 2导出量化。 2. Eager Mode Quantization是一个测试版功能。用户需要进行融合,并手动指定量…

尚硅谷谷粒商城项目笔记——六、使用navciat连接docker中的mysql容器【电脑CPU:AMD】

六、使用navciat连接docker中的mysql容器 注意: 因为电脑是AMD芯片,自己知识储备不够,无法保证和课程中用到的环境一样,所以环境都是自己根据适应硬件软件环境重新配置的,这里的虚拟机使用的是VMware。 1navicat免费…

最新版Ableton Live 12.20 WIN MAC,长期更新持续有效

一。Ableton Live 12.20 WIN &MAC 2024.08.06发布 Ableton Live Suite是一款由ABLETON公司开发的功能强大且全面的音乐制作、内容编辑和演奏分析软件。它极大地改进了许多社会功能,使音乐创作、背景音乐的开发变得更加快捷方便。 软件的主要功能包括录音、作曲…

WordPress原创插件:Category-id-list分类ID显示查看

WordPress原创插件:Category-id-list分类ID显示查看 插件设置位置在工具栏

学习vue3 五,传送,缓存组件以及过渡和过渡列表

目录 Teleport传送组件 keep-alive缓存组件 transition动画组件 1. 过渡的类名 2. 自定义过渡class名 3. transition的生命周期 4.appear transition-group 1. 过渡列表 2. 列表的移动过渡 3. 状态过渡 Teleport传送组件 Teleport Vue 3.0新特性之一。 Teleport 是一…

Spring的配置类分为Full和Lite两种模式

Spring的配置类分为Full和Lite两种模式 首先查看 Configuration 注解的源码, 如下所示: Target({ElementType.TYPE}) Retention(RetentionPolicy.RUNTIME) Documented Component public interface Configuration {AliasFor(annotation Component.class)String value() defau…

(C23/C++23) 语句末尾的标签

文章目录 🔖前言🏷️ref🏷️标号 🔖兼容🏷️23标准前🏷️23标准后🏷️原因 🔖未兼容🔖END🌟关注我 🔖前言 🏷️ref C23提案复合语句末…

Serverless 1

一、云原生应用 云原生应用覆盖到: 大数据,人工智能,边缘计算,区块链等 服务代理:envoy API 网关:APISIX 服务网格:Istio 服务发现:CoreDNS 消息和流式处理:kafka Serve…

PDF预览:利用vue3-pdf-app实现前端PDF在线展示

目录 PDF预览:利用vue3-pdf-app实现前端PDF在线展示 一、vue3-pdf-app组件介绍及其优点 1、vue3-pdf-app是什么 2、作用与场景 3、类似的插件 二、项目初始化与依赖安装 1、初始化Vue3项目 2、安装依赖 三、集成vue3-pdf-app插件 1、引入插件 2、配置组件…

ChemLLM化学大模型再升级,AI助力化学研究

ChemLLM 介绍 ChemLLM 系列模型 是由上海人工智能实验室基于InternLM2 开发的首个兼备化学专业能力和对话、推理等通用能力的开源大模型。相比于现有的其他大模型,ChemLLM 对化学空间进行了有效建模,在分子、反应和其他领域相关的化学任务上表现优异。 …

解决戴尔台式电脑休眠后无法唤醒问题

近期发现有少量戴尔的台式机会有休眠后无法唤醒的问题,具体现象就是电脑在休眠后,电源指示灯以呼吸的频率闪烁,无论怎么点鼠标和键盘都没有反应,并且按开机按钮也没法唤醒,只能是长按开机键强制关机再重启才行&#xf…