图灵测试与人工智能

什么是图灵测试?

在一篇1950年发表的著名论文《Computing Machinery and Intelligence》中,数学家阿兰·图灵详细讨论了“机器能否拥有智能?”的问题。有趣的是,作为计算机科学与人工智能领域共同的先驱,图灵成功定义了什么是机器,但却不能定义什么是智能。正因如此,图灵设计了一个后人称为图灵测试的实验。图灵测试的核心想法是要求计算机在没有直接物理接触的情况下接受人类的询问,并尽可能把自己伪装成人类。如果“足够多”的询问者在“足够长”的时间里无法以“足够高”的正确率辨别被询问者是机器还是人类,我们就认为这个计算机通过了图灵测试。图灵把他设计的测试看作人工智能的一个充分条件,主张认为通过图灵测试的计算机应该被看作是拥有智能的。

 

具体就操作层面来说,图灵在他的论文原文中是这样定义图灵测试的[2]:

“我们称下面这个问题为“模仿游戏”。游戏参与者包括一个男人,一个女人,以及一个任意性别的询问者。询问者与另两个人待在不同的房间里,并通过打字的方式与他们交流,以确保询问者不能通过声音和笔迹区分二者。两位被询问者分别用X和Y表示,询问者事先只知道X和Y中有且仅有一位女性,而询问的目标是正确分辨X和Y中哪一位是女性。另一方面,两位被询问者X和Y的目标都是试图让询问者认为自己是女性。也就是说,男性被询问者需要把自己伪装成女性,而女性被询问者需要努力自证。现在我们问:如果我们把“模仿游戏”中的男性被询问者换成计算机,结果会怎样?相比人类男性,计算机能否使询问者更容易产生误判?”

这里有几个细节值得注意,它们在很大程度上决定了图灵测试的有效性。

 

(1)首先,图灵测试中询问者与被询问者之间进行的并不是普通的日常聊天,询问者的问题是以身份辨别为目的。这种情况下询问者通常不会花费时间寒暄和拉家常,而是会开门见山地说“为了证明你的身份,请配合我回答下面问题…”。事实上,目前网络上聊天机器人有时能够以假乱真,往往是采用了在用户在不知情的情况下尽量把谈话引到没有鉴别力的话题上的策略(例如“谈谈你自己吧”)。

 

(2)其次,图灵测试中人类被询问者的参与是必不可少的,她的存在是为了防止计算机采取“消极自证”的策略,例如拒绝正面回答问题,或者答非所问闪烁其词,就像一个真正的不合作的人所做的一样。在这种情况下,另一个积极自证的人类被询问者可以保证询问者总是有足够的信息做出判断。类似的情况也适用于当计算机试图模仿正在牙牙学语的幼童或头脑不清的病人等“特殊人类”时。

 

(3)另外,图灵测试的原则是要求询问的交互方式本身不能泄露被询问者的物理特征。在图灵所处的年代这几乎只能全部通过基于文本的自然语言来完成,因此图灵限定测试双方基于打字进行交流。但在多媒体技术发达的今天,视频、音频、图片等等“虚拟内容”都可以通过计算机以非物理接触的形式呈现(这当然是60年前的图灵不能预知的!)。因此,允许询问者在图灵测试中使用多媒体内容作为辅助材料进行提问(例如“请告诉我这个视频的笑点在哪儿”)似乎是对原始图灵测试定义的一个自然合理的补充[3]。

 

(4)最后,今天一般意义上理解的图灵测试不再严格区分人类参与者的性别。通常我们允许人类被询问者是任意性别,而询问者的目标也随之变成辨别哪一位被询问者是人类。

 

除此之外,完成一次具体的图灵测试还要注意很多操作细节,例如多少人参与测试算“足够多”,多长的讯问时间算“足够长”,多高的辨别正确率算“足够高”,如何挑选人类询问者和被询问者才能代表“人类”的辨别和自证能力,等等。由于图灵测试的巨大影响力,几十年来一直有人尝试挑战它,不时就会传出“某某计算机程序成功通过图灵测试”的消息。我想,正是对于意义深远的实验,我们才理应格外审慎。只有在仔细检查上面所列和其他一些重要细节之后,我们才能对其结果的有效性做出正确判断。类似几年前“超光速实验”那样的闹剧应该尽量避免。

 

图灵测试与人工智能是什么关系?

如果有一天机器真的通过了图灵测试,这到底意味着什么?这个问题涉及到图灵测试与人工智能的关系。的确,几乎所有有关人工智能的书籍都会谈到图灵测试,但一个经常被误解的地方是,图灵测试是作为一个人工智能的充分条件被提出的,它本身并没有,也从未试图定义智能的范畴。这一点图灵在他的论文里写的很清楚:

“机器能否拥有智能,为了回答这个问题我们应该首先定义‘机器’和‘智能’。一种可能性是根据大多数普通人的日常理解去定义这两个概念,但这样做是危险的。… … 在这里我并不打算定义这两个概念,而是转而考虑另一个问题,它与原问题密切相关,同时可以被更清楚无疑地表达。… …(图灵测试的描述)… …可能有人会说这项测试对机器而言过于严格——毕竟人类也无法反过来成功伪装成机器,这只需检查算术的速度和正确度即可辨别。难道被认为拥有智能的机器就不能表现出和人类不同的行为么?这是一个很有力的反对意见,但至少不管怎样,假如我们有能力制造出一个可以成功通过测试的机器的话,也就无需为这个反对意见烦恼了。”

 

借助集合的概念我们可以更容易地理解图灵测试与人工智能的关系。如图1所示,“所有智能行为”对应的集合和“所有人类行为”对应的集合既有交集又互有不同。在全部智能行为中有一些是人类靠自身无法做到的(比如计算出国际象棋中白棋是否必胜),但无论如何人类都被认为是有智能的,因此,在各方面都能达到“人类水平”— 也就是完成两个集合的交集部分—就应该被认作是“拥有智能”的。[4]另一方面,人类行为并不总是和智能相关。图灵测试要求机器全面模拟“所有人类行为”,其中既包括了两个集合的交集,也包括了人类的“非智能”行为,因此通过图灵测试是 “拥有智能”的一个有效的充分条件。

 

图灵本人对机器能够通过他的测试相当乐观,他大胆预测到2000年左右时,一台拥有1GB内存或类似规模的计算机可以在接受普通人5分钟的询问之后,使他们的判断正确率不超过70%”。然而直到2014年的今天,仍然没有任何机器被公认为已经通过图灵测试。有趣的是,这一失败事实反而还带来了一个我们再熟悉不过的应用 - 图形验证码。(每一次输入验证码都是一次图灵测试!)

 

图灵测试问题的进展缓慢与目前人工智能学界对图灵测试这个“充分条件”的研究热情不高有关。[5]这一部分上由于主流人工智能研究与图灵测试所追求的目标之间存在差异,同时也因为图灵测试本身难度巨大。下面我们通过人工智能研究的三个重要特征来进一步讨论图灵测试与人工智能之间的异同,以及为什么图灵测试不大可能在短时间内解决。

 

一、主流人工智能研究关注智能体的外部行为,而不是产生该行为的内部过程

 

在这方面图灵测试的思想和人工智能学界是完全一致的。只关注外部行为是一个典型的功能主义/行为主义风格的做法,事实上这也是一个人工智能经常被外界所指摘的地方。严格的“主观思考”定义要求智能体具有自我意识。但一方面,从严格的科学方法讲,我们甚至并不真的确定是否有客观证据证实 “意识”的存在。更重要的是,人们发现智能行为和主观思考完全可以被看作是两个独立的问题来考虑,二者并不必要纠缠在一起。具体来说,可以从数学上证明任何一台数字计算机的行为都可以用查表的方式机械地模拟。假设我们真的制造了一台具有“意识”的机器A,我们总可以制造另一台机器B以查表的方式来机械地模拟A的内部运行,问题是B是否具有意识?如果每一台“拥有”意识的机器都能被一台B这样的“机械查表式”的机器所模拟,那么我们就无法通过外部行为来断定一个机器在内部上是真的在“思考”还是只是在模拟“思考”的过程,[6] 因此“是否拥有意识”从行为主义的角度也就成了相对独立的“另外一个问题”。同时,“拥有意识的机器总可以被没有意识的机器模拟”也说明“拥有意识”并不能给机器带来额外的“行为能力”,这进一步降低了“拥有意识”在行为主义者眼中的重要性。

 

基于外部行为与主观思考之间的独立性,主流人工智能研究和图灵测试把实现外部行为作为唯一目标,这样的观点被称为弱人工智能观点。我们知道每个学科的研究都基于一个“基本假设”展开。比如支撑物理研究的基本假设是“万物运转都受一套普适的、永恒的规律所约束”,而物理研究的目的“只是”找出这套规律是什么。类似的,“弱人工智能假设”(weak AI hypothesis) 认为经过良好设计的计算机可以表现出不低于人类智能水平的外部智能行为。可以说主流人工智能研究是以弱人工智能假设为出发点,研究如何实现这样一个计算机。

 

二、主流人工智能研究关注如何模拟人类的纯粹智能活动,而不是全部脑力活动

 

就像前面提到的,人类的脑力活动 (mental process) 不仅包括智能,同时具有情感、审美能力、性格缺陷、社会文化习惯等等一系列“非智力特征”。因为图灵测试的模仿对象是普通人,事实上它对这些非智力特征的要求甚至可能还高过对纯粹智力的要求——作为一个普通人,他/她完全有可能对国际象棋一窍不通,但却不大可能从照片分辨不出美女/帅哥来。

 

当然,“非智力特征”的引入本身并不妨碍图灵测试成为一个有效的充分条件,但除非我们假设所有这些“非智力特征”都是拥有智能之后的必然产物,否则不得不承认图灵测试确实在机器智能这个核心问题之外加入了过多充满挑战却又显得不那么相关的因素。就像《人工智能》这本经典教科书里写到的,“航空领域试图制造性能良好的飞机,而不是使飞机飞得如此像鸽子以至于可以骗过其他鸽子。”人工智能研究确实应该更多关注与智力活动相关的抽象功能和一般原则。

 

三、人工智能的最终目标是能够综合适应“人类所在环境”的单一智能体,而不是专门解决特定数学问题的算法

 

在这一点上图灵测试与人工智能研究的最终目标也是一致的,只不过现有的人工智能水平离这一目标还相去甚远。事实上“综合模拟人类的智力活动”正是人工智能区别于其他计算机科学分支的地方。我们通过比较人工智能软件与传统软件来说明这一点。首先从最广义的角度看,传统软件也应属于人工智能的范畴:实际上很多早期的计算机科学家,比如图灵,就是以人工智能为动力展开对计算机科学的研究。所谓“计算”本来就是诸多人类智能活动中的一种。一个从未接触过计算机的人也许很难说清 “从一个数列中找出所有素数” 和“从一张照片中找出一只狗”哪个更有资格代表“智能”(前者属于传统软件范畴,后者属于传统人工智能范畴)。但另一方面,传统软件并不代表人工智能的全部内涵。粗略讲,我们可以认为传统软件对应了这样一类“计算问题”,它们的共同特点是,问题本身是用一个算法(或非构造性的数学描述)来描述的,而对它们的研究主要关注在如何找到更好的算法。[7]而我们称之为“人工智能问题”的问题可以理解为另一类“计算问题”,它们的共同特点是无法用算法或从数学上对问题进行精确定义,这些问题的“正确答案”从本质上取决于我们人在面对这类问题时如何反应。对于人工智能问题,我们可以基于数学模型或计算模型来设计算法,但问题的本质并不是数学的。

 

通用人工智能(Artificial General Intelligence)基于弱人工智能假设,以全面模拟人类的所有智力行为为目标。注意到图灵测试作为一个充分条件,是不可能在通用人工智能真正实现之前得到解决的。另一方面,可以说现有每一个AI分支的成功都是通过图灵测试的必要条件,而它们中的大部分还没有达到“人类水平”。因为我们不可能穷尽所有人类智能行为,必须依赖有限个具有通用性的模型和算法来实现通用智能。目前人们仍然只能基于一些简单初等的模型来设计学习、推理、和规划算法。这些AI分支的研究都默认基于针对自己领域问题的弱人工智能假设,而支撑这些子领域研究的动力往往是其巨大的社会实用价值。它们固然已经在很多具体应用领域成绩斐然,但看起来离图灵测试所要求的水平仍然相差甚远。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/3941.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

软件测试/测试开发丨ChatGPT训练营来,手把手带你玩转ChatGPT

ChatGPT的出现为测试行业带来了新的机遇和挑战。尽管许多人担心它的强大可能会取代测试人员,但实际上ChatGPT可以成为测试人员的强大助手,提高测试工作的效率和准确性。那么,我们应该如何借助 ChatGPT,让我们的测试工作更高效呢&a…

改bug神器ChatGPT AI测试将取代人工吗?

最近ChatGPT大火,各大论坛中都会出现它的关键词。 机器和人对话本不是什么新鲜事,而ChatGPT上线仅5天,用户数量就超百万,之所以能在短时间吸引到这么多用户尝鲜,是因为它比“人工智障”的AI前辈们聪明多了~ 玩了一会…

一个故意不通过图灵测试的人工智能

一个故意不通过图灵测试的人工智能 人工智能很可能导致人类的永生或者灭绝,而这一切很可能在我们的有生之年发生。 上面这句话不是危言耸听,请耐心的看完本文再发表意见。这篇翻译稿翻译完一共三万五千字,我从上星期开始翻,熬了好…

Google AI真的通过了图灵测试?还是图灵测试已经过时?

作者 | 阿司匹林 出品 | AI科技大本营(公众号ID:rgznai100) 本月初的时候,Google 在一年一度的开发者大会上大秀肌肉,其中最引人瞩目的当属 Google Duplex(全双工)技术。基于这种技术的 Google …

图灵测试是人工智能的标准吗?

来源:赛先生 编者按 科学就是一个可以被证伪的学说。任何一个科学论述,都要能够被实验检验。比如说,要科学地解释定义什么是自我意识,其本质就是设计一个实验。比如观察动物在镜子里看到自己时候的行为,是寻找镜子后面…

ChatGPT到底有多聪明?我测试了ChatGPT的数学能力

来源:AI前线 译者:马可薇 人人都听说过最新,也是最复杂的聊天机器人 chatGPT。而众所周知,它在英文文学等“软话题”方面甚是熟练,所以我决定测试它在数学这类“硬话题”方面的表现。你可能不知道,但我是…

什么是图灵测试?

图灵测试一词来源于计算机科学和密码学的先驱阿兰麦席森图灵写于1950年的一篇论文《计算机器与智能》。阿兰麦席森图灵1950年设计出这个测试,其内容是,如果电脑能在5分钟内回答由人类测试者提出的一系列问题,且其超过30%的回答让测试者误认为…

高校教师 | ChatGPT的23种用法

近日,ChatGPT引发舆论风暴,火遍全球,甚至隔着“防火墙”引发了中国民间的应用热潮。 作为一款生成式人工智能软件,ChatGPT可以就任何议题生成文本,完成包括回答问题,撰写文章、论文、诗歌在内的多种工作。各…

在IDE中使用Bito - 一个不需要VPN就可以使用的chatgpt

文章目录 在IDE中使用Bito什么是Bito为什么要使用BitoBito可以做什么如何在IDE中安装Bito使用Bito 在IDE中使用Bito 什么是Bito 用他自己的介绍就是: Bito’s AI helps developers dramatically accelerate their impact. It’s a Swiss Army knife of capabilit…

如何使用 AWS 和 ChatGPT 创建最智能的多语言虚拟助手

上周ChatGPT发布了,每个人都在尝试令人惊奇的事情。我也开始使用它并想尝试它如何使用AWS的AI 服务进行集成,结果非常棒! 在这篇文章中,我将逐步解释我是如何创建这个项目的,这样你也可以做到! 最重要的是…

ChatGPT编程能力实证研究

CODEWISDOM ChatGPT编程能力实证研究 刘子夕 冯洋1 陈碧欢2 娄一翎 彭鑫 陈振宇 1 fengyangnju.edu.cn; 2 bhchenfudan.edu.cn 南京大学 计算机软件新技术国家重点实验室 复旦大学 计算机科学技术学院 摘要 近年来,大型语言模型(LLM)得到了快…

chatgpt赋能python:Python如何帮你更聪明地买股票

Python 如何帮你更聪明地买股票 股票市场是一场风险与机遇并存的游戏,每位投资者都希望能够购买到高品质的股票并赚取稳定的利润。而借助 Python 编程语言,你可以更加轻松地分析市场趋势,提高股票投资的准确性和盈利能力。 一、数据分析与预…

谷歌版 ChatGPT 翻车!市值暴跌七千亿

01 前言 最近微软出品的 ChatGPT 确实引起很大的关注呀,这不,谷歌就紧跟发布了谷歌版 ChatGPT - Bard,今天带大家来看看微谷的第一波较量。 源自:机器之心 原文:https://mp.weixin.qq.com/s/1mkAlJbtYCmQcz_mV9cdoA 如…

基于ChatGPT完美替代 Grammarly润色和语法纠错的免费插件!

OpenAI Polisher Bob Plugin 简介 ChatGPT 向我们展示了 GPT 模型的伟大之处,所以我使用 ChatGPT 的 API 实现了这个用来给语言润色和语法纠错的 Bob 插件,效果拔群!完美替代 Grammarly! 使用截图 使用方法 安装 Bob (版本 > 0.50)下载此插…

ChatGPT Prompting开发实战(一)

第7章 ChatGPT Prompting开发实战 7.1 Prompting在LangChain框架中的应用 本节跟大家讲提示工程(Prompt Engineering),主要基于工业级的源码以及具体的项目,无论是工程人员,还是不具有技术背景的人员,大家多少都听说过提示词,或者频繁使用过,简单而言,当我们使用OpenA…

ChatGPT prompt指令大全

ChatGPT prompt指令大全 更多Prompt自动使用,可以在chrome插件中搜索 WebChatGPT,没有账号的,可以拉到文章最下面。 目录 担任雅思写作考官 写小说 充当 Linux 终端 充当英语翻译和改进者 充当论文润色者(拿摘要部分举例&am…

火爆出圈的OpenAI模型ChatGPT体验

1、ChatGPT简要介绍 ChatGPT是一种高效的语言模型,全称为"聊天式自动回复生成技术"(Chat-based Automatic Reply Generation Technology),用于预测人类语言的后续内容。它是基于OpenAI的GPT-3模型构建的,具…

每日一个 ChatGPT 使用小技巧系列之1 - 给出提纲,让 ChatGPT 帮你写作

我以前写过一篇文章,介绍了我日常工作和学习中使用 ChatGPT 的一些技巧: 与其整天担心 AI 会取代程序员,不如先让 AI 帮助自己变得更强大 为代码生成对应的单元测试代码 利用 ChatGPT 帮助自己研读经典框架的源代码 代码重构和性能优化 阅读…

ChatGPT最新研究:可能影响80%工作岗位,收入越高影响越大

Datawhale分享 最新:ChatGPT影响,来源:机器之心 ChatGPT 的影响涵盖所有收入阶层,且高收入工作可能面临更大的风险。 改变经济、劳动力和教育环境 和很多专家一样,Altman 担心人工智能技术的强大能力会制造过多虚假信…

爆红的chatgpt是如何诞生的?

今年,人工智能行业最大的新闻当属 DeepMind的 AlphaGo战胜了李世石,这是 AlphaGo在与人类围棋高手对战中,以总比分4比1击败李世石。 DeepMind团队公布的研究成果在 AI界引起了巨大反响。它从深度学习(Deep Learning)入…