【机器学习】BP神经网络正向计算


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • BP神经网络正向计算
    • 1. 引言
    • 2. BP神经网络结构回顾
    • 3. 正向计算的基本原理
    • 4. 数学表示
      • 4.1 符号定义
      • 4.2 计算过程
    • 5. 激活函数
      • 5.1 Sigmoid函数
      • 5.2 Tanh函数
      • 5.3 ReLU (Rectified Linear Unit)函数
      • 5.4 Leaky ReLU函数
    • 6. 正向计算的实现
    • 7. 正向计算的优化
      • 7.1 矩阵运算
      • 7.2 批处理
      • 7.3 GPU加速
      • 7.4 模型压缩
    • 8. 正向计算的应用
    • 9. 结论
    • 参考文献

BP神经网络正向计算

1. 引言

反向传播(Backpropagation,简称BP)神经网络是人工神经网络中最常用和最基础的模型之一。虽然BP神经网络以其反向传播算法而闻名,但正向计算同样是网络运行的关键组成部分。本文将详细介绍BP神经网络的正向计算过程,包括其基本原理、数学表示和实现方法。
在这里插入图片描述

2. BP神经网络结构回顾

在深入讨论正向计算之前,让我们先回顾一下BP神经网络的基本结构:

  1. 输入层:接收外部输入信号
  2. 隐藏层:对输入信息进行非线性变换(可以有多个)
  3. 输出层:产生网络的最终输出

每一层都由若干个神经元组成,相邻层之间的神经元通过权重连接。

3. 正向计算的基本原理

BP神经网络的正向计算是指信息从输入层经过隐藏层,最后到达输出层的过程。在这个过程中,每一层的神经元都会接收上一层的输出,进行加权求和,然后通过激活函数产生自己的输出。

正向计算的主要步骤如下:

  1. 输入层接收外部信号
  2. 计算隐藏层的输入和输出
  3. 计算输出层的输入和输出
    在这里插入图片描述

4. 数学表示

为了更好地理解正向计算过程,我们来看一下其数学表示。假设我们有一个三层神经网络(输入层、一个隐藏层、输出层)。

4.1 符号定义

  • x x x: 输入向量
  • W ( 1 ) W^{(1)} W(1): 输入层到隐藏层的权重矩阵
  • b ( 1 ) b^{(1)} b(1): 隐藏层的偏置向量
  • W ( 2 ) W^{(2)} W(2): 隐藏层到输出层的权重矩阵
  • b ( 2 ) b^{(2)} b(2): 输出层的偏置向量
  • f f f: 激活函数

4.2 计算过程

  1. 隐藏层的输入:

    z ( 1 ) = W ( 1 ) ⋅ x + b ( 1 ) z^{(1)} = W^{(1)} \cdot x + b^{(1)} z(1)=W(1)x+b(1)

  2. 隐藏层的输出:

    a ( 1 ) = f ( z ( 1 ) ) a^{(1)} = f(z^{(1)}) a(1)=f(z(1))

  3. 输出层的输入:

    z ( 2 ) = W ( 2 ) ⋅ a ( 1 ) + b ( 2 ) z^{(2)} = W^{(2)} \cdot a^{(1)} + b^{(2)} z(2)=W(2)a(1)+b(2)

  4. 输出层的输出(网络最终输出):

    y = f ( z ( 2 ) ) y = f(z^{(2)}) y=f(z(2))

5. 激活函数

激活函数在神经网络中起着至关重要的作用,它引入了非线性,使得网络能够学习复杂的模式。以下是几种常用的激活函数:
在这里插入图片描述

5.1 Sigmoid函数

f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1

特点:

  • 输出范围(0, 1)
  • 易于求导
  • 存在梯度消失问题

5.2 Tanh函数

f ( x ) = e x − e − x e x + e − x f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} f(x)=ex+exexex

特点:

  • 输出范围(-1, 1)
  • 零中心化
  • 仍存在梯度消失问题

5.3 ReLU (Rectified Linear Unit)函数

f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)

特点:

  • 计算简单,收敛速度快
  • 缓解梯度消失问题
  • 可能导致神经元"死亡"

5.4 Leaky ReLU函数

f ( x ) = max ⁡ ( α x , x ) f(x) = \max(\alpha x, x) f(x)=max(αx,x),其中 α \alpha α是一个小正数

特点:

  • 解决了ReLU的"死亡"问题
  • 保留了ReLU的其他优点

6. 正向计算的实现

以下是一个简单的BP神经网络正向计算的Python实现示例:

import numpy as npdef sigmoid(x):return 1 / (1 + np.exp(-x))class BPNeuralNetwork:def __init__(self, input_size, hidden_size, output_size):self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_size# 初始化权重和偏置self.W1 = np.random.randn(self.input_size, self.hidden_size)self.b1 = np.zeros((1, self.hidden_size))self.W2 = np.random.randn(self.hidden_size, self.output_size)self.b2 = np.zeros((1, self.output_size))def forward(self, X):# 隐藏层self.z1 = np.dot(X, self.W1) + self.b1self.a1 = sigmoid(self.z1)# 输出层self.z2 = np.dot(self.a1, self.W2) + self.b2self.a2 = sigmoid(self.z2)return self.a2# 使用示例
nn = BPNeuralNetwork(2, 4, 1)
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])for input in X:output = nn.forward(input.reshape(1, -1))print(f"Input: {input}, Output: {output[0][0]}")

7. 正向计算的优化

在实际应用中,我们可以采用一些技巧来优化BP神经网络的正向计算过程:

7.1 矩阵运算

使用矩阵运算可以大大提高计算效率,特别是在处理大规模数据时。现代深度学习框架(如TensorFlow和PyTorch)都对矩阵运算进行了优化。

7.2 批处理

批处理是指同时处理多个样本,而不是一次只处理一个。这可以提高计算效率,并且在某些情况下可以提高模型的泛化能力。

7.3 GPU加速

利用GPU的并行计算能力可以显著加速神经网络的计算过程,包括正向计算。

7.4 模型压缩

对于一些资源受限的场景,可以考虑使用模型压缩技术,如权重量化、剪枝等,以减少计算量和内存占用。

8. 正向计算的应用

BP神经网络的正向计算在许多领域都有广泛应用,例如:

  1. 图像识别:利用卷积神经网络(CNN)进行图像分类、目标检测等任务。
  2. 自然语言处理:使用循环神经网络(RNN)或Transformer进行文本分类、机器翻译等任务。
  3. 推荐系统:构建用户-物品交互模型,预测用户偏好。
  4. 金融预测:预测股票价格、信用评分等。
  5. 医疗诊断:基于医疗数据进行疾病诊断和预测。

9. 结论

BP神经网络的正向计算是整个网络运行的基础。通过本文的介绍,我们详细了解了正向计算的原理、数学表示和实现方法。正向计算不仅是神经网络训练过程中的重要一步,也是模型部署和应用时的核心操作。

随着深度学习技术的不断发展,BP神经网络及其变体仍然在各个领域发挥着重要作用。理解和掌握正向计算过程,对于深入学习神经网络原理、优化网络性能以及开发创新应用都具有重要意义。

参考文献

  1. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
  2. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.
  3. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/394843.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

7.3.1.算法设计与分析-总结及真题讲解

总结 分治法特征:把一个问题拆分成多个小规模的相同子问题,一般可用递归解决。 经典问题:斐波那契数列、归并排序、快速排序、矩阵乘法、二分搜索、大整数乘法、汉诺塔 回溯法特征:系统的搜索一个问题的所有解或任一解。 经典问题…

ctfhub文件上传

⽆验证 上传⼀句话⽊⻢&#xff0c;发现上传成功 1.php ⼀句话⽊⻢内容&#xff1a; <?php eval($_POST[cmd]);?> 上传⼀句话⽊⻢&#xff0c;发现上传成功 http://challenge-8b27d18368ecc25c.sandbox.ctfhub.com:10800/upload/1.ph p 前端验证 开启题⽬ 上传⼀个…

[Modbus] Modbus协议开发-基本概念(一)

历史 ModBus官网是Modicon&#xff08;Modicon早年已被施耐德收购&#xff09;公司为其PLC通讯而开发的一种通讯协议。 概述 通过Modbus协议&#xff0c;控制器之间、或控制器经由网络&#xff08;如以太网&#xff09;可以和其它设备之间进行通信。 优点 免费、好用、成熟…

DIRB:一款强大的Web目录扫描工具使用指南

网安学习交流 DIRB是一款广泛使用的开源Web内容扫描工具&#xff0c;它专注于发现Web服务器上存在的目录和文件。对于安全研究员、渗透测试人员以及Web开发者来说&#xff0c;DIRB是一个不可或缺的工具&#xff0c;它能帮助他们识别潜在的入口点&#xff0c;从而进一步评估目标…

Java学习Day20

Vue学习 nodejs的安装与环境配置 1.直接去官网下载合适版本的nodejs( https://nodejs.org/zh-cn/download/prebuilt-installer) 2.解压下载的安装包&#xff0c;将文件路径配置到系统变量的path中&#xff0c;然后确认后退出。可以使用终端来查看安装的nodejs版本。使用winR…

【C++ Primer Plus】学习笔记 4

文章目录 前言一、结构类型1.在程序中使用结构2.C11结构初始化3. 结构可以将 string 类作为成员吗4.其他特性5.结构数组 二、共用体三、枚举1.设置枚举量的值2. 枚举的取值范围 前言 该笔记内容为书第四章——复合类型&#xff0c;加油加油 一、结构类型 结构是用户定义的类型…

文件:ls,ll,fcpgets,cpwr

1、fcpgets fgets和fputs用于处理文本文件&#xff0c;而不是二进制文件&#xff0c;因为会进行换行符的处理&#xff0c;图片文件包含二进制数据并且包含\0字符&#xff0c;会出现意外终止条件。 2、cprw fread&#xff1a;函数从文件流中读取数据&#xff0c;储存到指向空间…

【Android Studio】gradle文件、配置、版本下载、国内源(SDK版本、gradle版本以及gradle-plugin(AGP)版本)

文章目录 AS查看gradle-plugin版本及gradle版本&#xff08;图形&#xff09;查看gradle-plugin版本及gradle版本&#xff08;配置文件&#xff09;配置文件分析解决gradle下载失败、版本错乱等问题。 Gradle 是一个基于 Apache Ant 和 Apache Maven 概念的自动化构建工具&…

Linux:多线程(二.理解pthread_t、线程互斥与同步、基于阻塞队列的生产消费模型)

上次讲解了多线程第一部分&#xff1a;Linux&#xff1a;多线程&#xff08;一.Linux线程概念、线程控制——创建、等待、退出、分离&#xff0c;封装一下线程&#xff09; 文章目录 1.理解Linux下线程——理解tid2. Linux线程互斥2.1相关概念2.2引入问题分析问题解决思路 2.3L…

牛客网每日刷题之 HJ99.自守数(C++)

在不断学习的过程中也不能忘记了基础知识的巩固&#xff0c;在学习新的知识后要学会去举一反三&#xff0c;前不久我刚刚了解了一些关于 string 类的知识&#xff0c;对牛客网的 自守数 有了新的解题思路&#xff0c;让我们一起看看这道题吧 思路解析 a. 整数方法 1. 首先我们知…

盘点5个PDF 怎么转换成 Word 的实用技巧

在日常的办公和学习中&#xff0c;要将 PDF 文件转换成 Word 是很常有的事。方便我们编辑、修改内容或者是提取其中的内容。一般都会用到一些工具&#xff1b;下面&#xff0c;我将为大家介绍5种高效且实用的 PDF 转 Word 的方法。 1、PDF365转换软件 直通车&#xff1a;www.…

模块化叙事的演变:DeFi借贷开发的模块化转型

随着区块链技术的不断发展&#xff0c;去中心化金融&#xff08;DeFi&#xff09;正经历一场深刻的变革。模块化借贷作为这一变革的重要部分&#xff0c;正逐渐成为加密金融领域的焦点。本文将探讨模块化借贷的起源、演变及其未来发展方向。 一、模块化的起源 模块化区块链的概…

nodejs/node-sass/sass-loader三者版本对应关系(已解决)

基本前提&#xff1a;了解版本对应关系 示例&#xff1a; 我的nodejs&#xff1a;v14.21.3&#xff0c; 则package.json: "node-sass": "^4.14.1", "sass-loader": "^8.0.0",扩展&#xff1a; 查看node历史版本&#xff1a; Node.js…

CVE-2017-15715~Apache解析漏洞【春秋云境靶场渗透】

Apache解析漏洞 漏洞原理 # Apache HTTPD 支持一个文件拥有多个后缀&#xff0c;并为不同后缀执行不同的指令。比如如下配置文件&#xff1a; AddType text/html .html AddLanguage zh-CN .cn# 其给 .html 后缀增加了 media-type &#xff0c;值为 text/html &#xff1b;给 …

【C++进阶学习】第十二弹——C++ 异常处理:深入解析与实践应用

前言&#xff1a; 在C编程语言中&#xff0c;异常处理是一种重要的机制&#xff0c;它允许程序员在运行时捕获和处理错误或异常情况。本文将详细介绍C异常处理的相关知识点&#xff0c;包括异常的定义、抛出与捕获、异常处理的原则、以及在实际编程中的应用。 目录 1. 异常处理…

【目标检测实验系列】YOLOv5高效涨点:基于NAMAttention规范化注意力模块,调整权重因子关注有效特征(文内附源码)

1. 文章主要内容 本篇博客主要涉及规范化注意力机制&#xff0c;融合到YOLOv5(v6.1版本&#xff0c;去掉了Focus模块)模型中&#xff0c;通过惩罚机制&#xff0c;调整特征权重因子&#xff0c;使模型更加关注有效特征&#xff0c;助力模型涨点。 2. 简要概括 论文地址&#x…

为什么要用数据库管理系统?5个你不得不知道的理由

你是否曾经想过,为什么几乎所有的企业和组织都在使用数据库管理系统(DBMS)?为什么不直接使用文件系统来存储和管理数据呢?如果你有这样的疑问,那么这篇文章正是为你而写。在接下来的内容中,我们将深入探讨使用数据库管理系统的5个关键原因,这些原因将彻底改变你对数据管理的认…

企业及园区电力能源管理系统方案

概述 面对中小型的用能集团、园区能耗监测分析等场景需求&#xff0c;拓扑未来公司推出标准化的企业及园区电力能源管理系统方案&#xff0c;力求高效高质地为目标客户提供高效部署、轻松运维的本地化能源管理解决方案。 本方案以软硬件一体的方式&#xff0c;集成了标准电力监…

c++----初识模板

大家好&#xff0c;这篇博客想与大家分享一些我们c中比较好用的知识点。模板。首先咧&#xff0c;我们都知道模板嘛&#xff0c;就是以前人的经验总结出来的知识。方便我们使用。这里的模板也是一样的。当我们学习过后&#xff0c;对于一些在c中的自定义函数&#xff0c;我们在…

GIS,矢量瓦片加载速度优化

文章目录 一、前言二、矢量瓦片的基础知识三、矢量切片加载速度优化3.1 地图缩编3.2 矢量瓦片中的图层根据显示层级定制3.3 矢量瓦片中的图层字段要按需定制3.4 多个图层合并为矢量切片图层组发布 四、总结 一、前言 单个矢量瓦片的大小并没有固定的上限&#xff0c;这意味着在…