Python实战项目:天气数据爬取+数据可视化(完整代码)

在这里插入图片描述

一、选题的背景

  • 随着人们对天气的关注逐渐增加,天气预报数据的获取与可视化成为了当今的热门话题,天气预报我们每天都会关注,天气情况会影响到我们日常的增减衣物、出行安排等。每天的气温、相对湿度、降水量以及风向风速是关注的焦点。通过Python网络爬虫爬取天气预报让我们快速获取和分析大量的天气数据,并通过可视化手段展示其特征和规律。这将有助于人们更好地理解和应用天气数据,从而做出更准确的决策和规划

二、主题式网络爬虫设计方案

①主题式网络爬虫名称:天气预报爬取数据与可视化数据
②主题式网络爬虫爬取的内容与数据特征分析:
③爬取内容:天气预报网站上的历史天气数据 包括(日期,最高温度,最低温度,天气,风向)等信息
④数据特征分析:时效性,完整性,结构化,可预测性等特性
⑤主题式网络爬虫设计方案概述

  • 实现思路:本次设计方案首先分析网站页面主要使用requests爬虫程序,实现网页的请求、解析、过滤、存储等,通过pandas库对数据进行分析和数据可视化处理。
  • 该过程遇到的难点:动态加载、反爬虫、导致爬虫难以获取和解析数据,数据可视化的效果和美观性

三、主题页面的结构特征分析

  • 1.主题页面的结构与特征分析

在这里插入图片描述

(1) 导航栏位于界面顶部

(2) 右侧热门城市历史天气

(3) 中间是内容区海口气温走势图以及风向统计

(4) 页面底部是网站信息和网站服务

2. Htmls 页面解析

class="tianqi_pub_nav_box"顶部导航栏

class="tianqi_pub_nav_box"右侧热门城市历史天气

3.节点(标签)查找方法与遍历方法

for循环迭代遍历

温馨提示:篇幅有限,完整代码已打包文件夹,获取方式在:
在这里插入图片描述


四、网络爬虫程序设计

数据来源:查看天气网:http://www.tianqi.com.cn。访问海口市的历史天气网址:https://lishi.tianqi.com/haikou/202311.html,利用Python的爬虫技术从网站上爬取东莞市2023-11月历史天气数据信息。

Part1: 爬取天气网历海口史天气数据并保存未:"海口历史天气【2023年11月】.xls"文件


在这里插入图片描述

  1 import requests  2 from lxml import etree  3 import xlrd, xlwt, os  4 from xlutils.copy import copy  5 6 class TianQi():  7     def \_\_init\_\_(self):8         pass9 10     #爬虫部分11     def spider(self): 12         city\_dict = { 13             "海口": "haikou"14 }15         city = '海口'16         city = city\_dict\[f'{city}'\]17         year = '2023'18         month = '11'19         start\_url = f'https://lishi.tianqi.com/{city}/{year}{month}.html'20         headers = { 21             'authority': 'lishi.tianqi.com',22             'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,\*/\*;q=0.8,application/signed-exchange;v=b3;q=0.7',23             'accept-language': 'zh-CN,zh;q=0.9',24             'cache-control': 'no-cache',25             # Requests sorts cookies= alphabetically26             'cookie': 'Hm\_lvt\_7c50c7060f1f743bccf8c150a646e90a=1701184759; Hm\_lvt\_30606b57e40fddacb2c26d2b789efbcb=1701184793; Hm\_lpvt\_30606b57e40fddacb2c26d2b789efbcb=1701184932; Hm\_lpvt\_7c50c7060f1f743bccf8c150a646e90a=1701185017',27             'pragma': 'no-cache',28             'referer': 'https://lishi.tianqi.com/ankang/202309.html',29             'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A\_Brand";v="24"',30             'sec-ch-ua-mobile': '?0',31             'sec-ch-ua-platform': '"Windows"',32             'sec-fetch-dest': 'document',33             'sec-fetch-mode': 'navigate',34             'sec-fetch-site': 'same-origin',35             'sec-fetch-user': '?1',36             'upgrade-insecure-requests': '1',37             'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',38         }39         response = requests.get(start\_url,headers=headers).text40         tree = etree.HTML(response) 41         datas = tree.xpath("/html/body/div\[@class='main clearfix'\]/div\[@class='main\_left inleft'\]/div\[@class='tian\_three'\]/ul\[@class='thrui'\]/li")42         weizhi = tree.xpath("/html/body/div\[@class='main clearfix'\]/div\[@class='main\_left inleft'\]/div\[@class='inleft\_tian'\]/div\[@class='tian\_one'\]/div\[@class='flex'\]\[1\]/h3/text()")\[0\]43         self.parase(datas,weizhi,year,month)44 45 46    #解析部分47     def parase(self,datas,weizhi,year,month): 48         for data in datas: 49             #1、日期50             datetime = data.xpath("./div\[@class='th200'\]/text()")\[0\]51             #2、最高气温52             max\_qiwen = data.xpath("./div\[@class='th140'\]\[1\]/text()")\[0\]53             #3、最低气温54             min\_qiwen = data.xpath("./div\[@class='th140'\]\[2\]/text()")\[0\]55             #4、天气56             tianqi = data.xpath("./div\[@class='th140'\]\[3\]/text()")\[0\]57             #5、风向58             fengxiang = data.xpath("./div\[@class='th140'\]\[4\]/text()")\[0\]59             dict\_tianqi = { 60                 '日期':datetime,61                 '最高气温':max\_qiwen,62                 '最低气温':min\_qiwen,63                 '天气':tianqi,64                 '风向':fengxiang65             }66             data\_excel = { 67                 f'{weizhi}{year}{month}月】':\[datetime,max\_qiwen,min\_qiwen,tianqi,fengxiang\]68             }69             self.chucun\_excel(data\_excel,weizhi,year,month)70             print(dict\_tianqi)71 72 73    #储存部分74     def chucun\_excel(self, data,weizhi,year,month): 75         if not os.path.exists(f'{weizhi}{year}{month}月】.xls'):76             # 1、创建 Excel 文件77             wb = xlwt.Workbook(encoding='utf-8')78             # 2、创建新的 Sheet 表79             sheet = wb.add\_sheet(f'{weizhi}{year}{month}月】', cell\_overwrite\_ok=True)80             # 3、设置 Borders边框样式81             borders = xlwt.Borders() 82             borders.left = xlwt.Borders.THIN 83             borders.right = xlwt.Borders.THIN 84             borders.top = xlwt.Borders.THIN 85             borders.bottom = xlwt.Borders.THIN 86             borders.left\_colour = 0x4087             borders.right\_colour = 0x4088             borders.top\_colour = 0x4089             borders.bottom\_colour = 0x4090             style = xlwt.XFStyle()  # Create Style91             style.borders = borders  # Add Borders to Style92             # 4、写入时居中设置93             align = xlwt.Alignment() 94             align.horz = 0x02  # 水平居中95             align.vert = 0x01  # 垂直居中96             style.alignment = align 97             # 5、设置表头信息, 遍历写入数据, 保存数据98             header = ( 99                 '日期', '最高气温', '最低气温', '天气', '风向')
100             for i in range(0, len(header)):
101                 sheet.col(i).width = 2560 \* 3
102                 #行,列, 内容,   样式
103 sheet.write(0, i, header\[i\], style)
104                 wb.save(f'{weizhi}{year}{month}月】.xls')
105         # 判断工作表是否存在
106         if os.path.exists(f'{weizhi}{year}{month}月】.xls'):
107             # 打开工作薄
108             wb = xlrd.open\_workbook(f'{weizhi}{year}{month}月】.xls')
109             # 获取工作薄中所有表的个数
110             sheets = wb.sheet\_names()
111             for i in range(len(sheets)):
112                 for name in data.keys():
113                     worksheet = wb.sheet\_by\_name(sheets\[i\])
114                     # 获取工作薄中所有表中的表名与数据名对比
115                     if worksheet.name == name:
116                         # 获取表中已存在的行数
117                         rows\_old = worksheet.nrows
118                         # 将xlrd对象拷贝转化为xlwt对象
119                         new\_workbook = copy(wb)
120                         # 获取转化后的工作薄中的第i张表
121                         new\_worksheet = new\_workbook.get\_sheet(i)
122                         for num in range(0, len(data\[name\])):
123 new\_worksheet.write(rows\_old, num, data\[name\]\[num\])
124                         new\_workbook.save(f'{weizhi}{year}{month}月】.xls')
125 
126 if \_\_name\_\_ == '\_\_main\_\_':
127     t=TianQi()
128     t.spider()

Part2:根据海口历史天气【2023年11月】.xls生成海口市天气分布图
在这里插入图片描述

1 import pandas as pd2 from pyecharts.charts import Pie 3 from pyecharts import options as opts 4 from pyecharts.globals import ThemeType 5 6 def on(gender\_counts): 7     total = gender\_counts.sum() 8     percentages = {gender: count / total \* 100 for gender, count in gender\_counts.items()} 9     analysis\_parts = \[\]
10     for gender, percentage in percentages.items():
11         analysis\_parts.append(f"{gender}天气占比为{percentage:.2f}%,")
12     analysis\_report = "天气比例饼状图显示," + ''.join(analysis\_parts)
13     return analysis\_report
14 
15 df = pd.read\_excel("海口历史天气【2023年11月】.xls")
16 gender\_counts = df\['天气'\].value\_counts()
17 analysis\_text = on(gender\_counts)
18 pie = Pie(init\_opts=opts.InitOpts(theme=ThemeType.WESTEROS,bg\_color='#e4cf8e'))
19 
20 pie.add(
21     series\_name="海口市天气分布",
22     data\_pair=\[list(z) for z in zip(gender\_counts.index.tolist(), gender\_counts.values.tolist())\],
23     radius=\["40%", "70%"\],
24     rosetype="radius",
25     label\_opts=opts.LabelOpts(is\_show=True, position="outside", font\_size=14,
26                               formatter="{a}<br/>{b}: {c} ({d}%)")
27 )
28 pie.set\_global\_opts(
29     title\_opts=opts.TitleOpts(title="海口市11月份天气分布",pos\_right="50%"),
30     legend\_opts=opts.LegendOpts(orient="vertical", pos\_top="15%", pos\_left="2%"),
31     toolbox\_opts=opts.ToolboxOpts(is\_show=True)
32 )
33 pie.set\_series\_opts(label\_opts=opts.LabelOpts(formatter="{b}: {c} ({d}%)"))
34 html\_content = pie.render\_embed()
35 
36 # 生成HTML文件
37 complete\_html = f"""
38 <html>
39 <head>
40 <title>天气数据分析</title>
41 
42 </head>
43 <body style="background-color: #e87f7f">
44 <div style='margin-top: 20px;background-color='#e87f7f''>
45 <div>{html\_content}</div>
46 <h3>分析报告:</h3>
47 <p>{analysis\_text}</p>
48 </div>
49 </body>
50 </html>
51 """  
52 # 保存到HTML文件
53 with open("海口历史天气【2023年11月】饼图可视化.html", "w", encoding="utf-8") as file:
54     file.write(complete\_html)

Part3:根据海口历史天气【2023年11月】.xls生成海口市温度趋势
在这里插入图片描述

 1 import pandas as pd 2 import matplotlib.pyplot as plt 3 from matplotlib import font\_manager 4 import jieba 5 6 # 中文字体7 font\_CN = font\_manager.FontProperties(fname="C:\\Windows\\Fonts\\STKAITI.TTF")8 9 # 读取数据
10 df = pd.read\_excel('海口历史天气【2023年11月】.xls')
11 
12 # 使用 jieba 处理数据,去除 "C"
13 df\['最高气温'\] = df\['最高气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
14 df\['最低气温'\] = df\['最低气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
15 # 开始绘图
16 plt.figure(figsize=(20, 8), dpi=80)
17 max\_tp = df\['最高气温'\].tolist()
18 min\_tp = df\['最低气温'\].tolist()
19 x\_day = range(1, 31)
20 # 绘制30天最高气温
21 plt.plot(x\_day, max\_tp, label = "最高气温", color = "red")
22 # 绘制30天最低气温
23 plt.plot(x\_day, min\_tp, label = "最低气温", color = "skyblue")
24 # 增加x轴刻度
25 \_xtick\_label = \["11月{}日".format(i) for i in x\_day\]
26 plt.xticks(x\_day, \_xtick\_label, fontproperties=font\_CN, rotation=45)
27 # 添加标题
28 plt.title("2023年11月最高气温与最低气温趋势", fontproperties=font\_CN)
29 plt.xlabel("日期", fontproperties=font\_CN)
30 plt.ylabel("温度(单位°C)", fontproperties=font\_CN)
31 plt.legend(prop = font\_CN)
32 plt.show()

Part4:根据海口历史天气【2023年11月】.xls生成海口市词汇图
在这里插入图片描述

1 from pyecharts.charts import WordCloud 2 from pyecharts import options as opts 3 from pyecharts.globals import SymbolType 4 import jieba 5 import pandas as pd 6 from collections import Counter 7 8 # 读取Excel文件9 df = pd.read\_excel('海口历史天气【2023年11月】.xls')
10 # 提取商品名
11 word\_names = df\["风向"\].tolist() + df\["天气"\].tolist()
12 # 提取关键字
13 seg\_list = \[jieba.lcut(text) for text in word\_names\]
14 words = \[word for seg in seg\_list for word in seg if len(word) > 1\]
15 word\_counts = Counter(words)
16 word\_cloud\_data = \[(word, count) for word, count in word\_counts.items()\]
17 
18 # 创建词云图
19 wordcloud = (
20     WordCloud(init\_opts=opts.InitOpts(bg\_color='#00FFFF'))
21         .add("", word\_cloud\_data, word\_size\_range=\[20, 100\], shape=SymbolType.DIAMOND,
22              word\_gap=5, rotate\_step=45,
23              textstyle\_opts=opts.TextStyleOpts(font\_family='cursive', font\_size=15))
24         .set\_global\_opts(title\_opts=opts.TitleOpts(title="天气预报词云图",pos\_top="5%", pos\_left="center"),
25                          toolbox\_opts=opts.ToolboxOpts(
26                              is\_show=True,
27                              feature={
28                                  "saveAsImage": {},
29                                  "dataView": {},
30                                  "restore": {},
31                                  "refresh": {}
32 }
33 )
34 
35 )
36 )
37 
38 # 渲染词图到HTML文件
39 wordcloud.render("天气预报词云图.html")

爬虫课程设计全部代码如下:
 1 import requests2 from lxml import etree3 import xlrd, xlwt, os4 from xlutils.copy import copy5 6 class TianQi():7     def \_\_init\_\_(self):8         pass9 10     #爬虫部分11     def spider(self):12         city\_dict = {13             "海口": "haikou"14 }15         city = '海口'16         city = city\_dict\[f'{city}'\]17         year = '2023'18         month = '11'19         start\_url = f'https://lishi.tianqi.com/{city}/{year}{month}.html'20         headers = {21             'authority': 'lishi.tianqi.com',22             'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,\*/\*;q=0.8,application/signed-exchange;v=b3;q=0.7',23             'accept-language': 'zh-CN,zh;q=0.9',24             'cache-control': 'no-cache',25             # Requests sorts cookies= alphabetically26             'cookie': 'Hm\_lvt\_7c50c7060f1f743bccf8c150a646e90a=1701184759; Hm\_lvt\_30606b57e40fddacb2c26d2b789efbcb=1701184793; Hm\_lpvt\_30606b57e40fddacb2c26d2b789efbcb=1701184932; Hm\_lpvt\_7c50c7060f1f743bccf8c150a646e90a=1701185017',27             'pragma': 'no-cache',28             'referer': 'https://lishi.tianqi.com/ankang/202309.html',29             'sec-ch-ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A\_Brand";v="24"',30             'sec-ch-ua-mobile': '?0',31             'sec-ch-ua-platform': '"Windows"',32             'sec-fetch-dest': 'document',33             'sec-fetch-mode': 'navigate',34             'sec-fetch-site': 'same-origin',35             'sec-fetch-user': '?1',36             'upgrade-insecure-requests': '1',37             'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36',38         }39         response = requests.get(start\_url,headers=headers).text40         tree = etree.HTML(response)41         datas = tree.xpath("/html/body/div\[@class='main clearfix'\]/div\[@class='main\_left inleft'\]/div\[@class='tian\_three'\]/ul\[@class='thrui'\]/li")42         weizhi = tree.xpath("/html/body/div\[@class='main clearfix'\]/div\[@class='main\_left inleft'\]/div\[@class='inleft\_tian'\]/div\[@class='tian\_one'\]/div\[@class='flex'\]\[1\]/h3/text()")\[0\]43         self.parase(datas,weizhi,year,month)44 45 46    #解析部分47     def parase(self,datas,weizhi,year,month):48         for data in datas:49             #1、日期50             datetime = data.xpath("./div\[@class='th200'\]/text()")\[0\]51             #2、最高气温52             max\_qiwen = data.xpath("./div\[@class='th140'\]\[1\]/text()")\[0\]53             #3、最低气温54             min\_qiwen = data.xpath("./div\[@class='th140'\]\[2\]/text()")\[0\]55             #4、天气56             tianqi = data.xpath("./div\[@class='th140'\]\[3\]/text()")\[0\]57             #5、风向58             fengxiang = data.xpath("./div\[@class='th140'\]\[4\]/text()")\[0\]59             dict\_tianqi = {60                 '日期':datetime,61                 '最高气温':max\_qiwen,62                 '最低气温':min\_qiwen,63                 '天气':tianqi,64                 '风向':fengxiang65             }66             data\_excel = {67                 f'{weizhi}{year}{month}月】':\[datetime,max\_qiwen,min\_qiwen,tianqi,fengxiang\]68             }69             self.chucun\_excel(data\_excel,weizhi,year,month)70             print(dict\_tianqi)71 72 73    #储存部分74     def chucun\_excel(self, data,weizhi,year,month):75         if not os.path.exists(f'{weizhi}{year}{month}月】.xls'):76             # 1、创建 Excel 文件77             wb = xlwt.Workbook(encoding='utf-8')78             # 2、创建新的 Sheet 表79             sheet = wb.add\_sheet(f'{weizhi}{year}{month}月】', cell\_overwrite\_ok=True)80             # 3、设置 Borders边框样式81             borders = xlwt.Borders()82             borders.left = xlwt.Borders.THIN83             borders.right = xlwt.Borders.THIN84             borders.top = xlwt.Borders.THIN85             borders.bottom = xlwt.Borders.THIN86             borders.left\_colour = 0x4087             borders.right\_colour = 0x4088             borders.top\_colour = 0x4089             borders.bottom\_colour = 0x4090             style = xlwt.XFStyle()  # Create Style91             style.borders = borders  # Add Borders to Style92             # 4、写入时居中设置93             align = xlwt.Alignment()94             align.horz = 0x02  # 水平居中95             align.vert = 0x01  # 垂直居中96             style.alignment = align97             # 5、设置表头信息, 遍历写入数据, 保存数据98             header = (99                 '日期', '最高气温', '最低气温', '天气', '风向')
100             for i in range(0, len(header)):
101                 sheet.col(i).width = 2560 \* 3
102                 #           行,列, 内容,   样式
103                 sheet.write(0, i, header\[i\], style)
104                 wb.save(f'{weizhi}{year}{month}月】.xls')
105         # 判断工作表是否存在
106         if os.path.exists(f'{weizhi}{year}{month}月】.xls'):
107             # 打开工作薄
108             wb = xlrd.open\_workbook(f'{weizhi}{year}{month}月】.xls')
109             # 获取工作薄中所有表的个数
110             sheets = wb.sheet\_names()
111             for i in range(len(sheets)):
112                 for name in data.keys():
113                     worksheet = wb.sheet\_by\_name(sheets\[i\])
114                     # 获取工作薄中所有表中的表名与数据名对比
115                     if worksheet.name == name:
116                         # 获取表中已存在的行数
117                         rows\_old = worksheet.nrows
118                         # 将xlrd对象拷贝转化为xlwt对象
119                         new\_workbook = copy(wb)
120                         # 获取转化后的工作薄中的第i张表
121                         new\_worksheet = new\_workbook.get\_sheet(i)
122                         for num in range(0, len(data\[name\])):
123                             new\_worksheet.write(rows\_old, num, data\[name\]\[num\])
124                         new\_workbook.save(f'{weizhi}{year}{month}月】.xls')
125 
126 if \_\_name\_\_ == '\_\_main\_\_':
127     t=TianQi()
128     t.spider()
129 import pandas as pd
130 import jieba
131 from pyecharts.charts import Scatter
132 from pyecharts import options as opts
133 
134 from scipy import stats
135 
136 # 读取数据
137 df = pd.read\_excel('海口历史天气【2023年11月】.xls')
138 
139 # 使用 jieba 处理数据,去除 "C"
140 df\['最高气温'\] = df\['最高气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
141 df\['最低气温'\] = df\['最低气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
142 
143 # 创建散点图
144 scatter = Scatter()
145 scatter.add\_xaxis(df\['最低气温'\].tolist())
146 scatter.add\_yaxis("最高气温", df\['最高气温'\].tolist())
147 scatter.set\_global\_opts(title\_opts=opts.TitleOpts(title="最低气温与最高气温的散点图"))
148 html\_content = scatter.render\_embed()
149 
150 # 计算回归方程
151 slope, intercept, r\_value, p\_value, std\_err = stats.linregress(df\['最低气温'\], df\['最高气温'\])
152 
153 print(f"回归方程为:y = {slope}x + {intercept}")
154 
155 analysis\_text = f"回归方程为:y = {slope}x + {intercept}"
156 # 生成HTML文件
157 complete\_html = f"""
158 <html>
159 <head>
160     <title>天气数据分析</title>
161 </head>
162 <body style="background-color: #e87f7f">
163     <div style='margin-top: 20px;background-color='#e87f7f''>
164         <div>{html\_content}</div>
165         <p>{analysis\_text}</p>
166     </div>
167 </body>
168 </html>
169 """
170 # 保存到HTML文件
171 with open("海口历史天气【2023年11月】散点可视化.html", "w", encoding="utf-8") as file:
172     file.write(complete\_html)
173 
174 import pandas as pd
175 from flatbuffers.builder import np
176 from matplotlib import pyplot as plt
177 from pyecharts.charts import Pie
178 from pyecharts import options as opts
179 from pyecharts.globals import ThemeType
180 
181 def on(gender\_counts):
182     total = gender\_counts.sum()
183     percentages = {gender: count / total \* 100 for gender, count in gender\_counts.items()}
184     analysis\_parts = \[\]
185     for gender, percentage in percentages.items():
186         analysis\_parts.append(f"{gender}天气占比为{percentage:.2f}%,")
187     analysis\_report = "天气比例饼状图显示," + ''.join(analysis\_parts)
188     return analysis\_report
189 
190 df = pd.read\_excel("海口历史天气【2023年11月】.xls")
191 gender\_counts = df\['天气'\].value\_counts()
192 analysis\_text = on(gender\_counts)
193 pie = Pie(init\_opts=opts.InitOpts(theme=ThemeType.WESTEROS,bg\_color='#e4cf8e'))
194 pie.add(
195     series\_name="海口市天气分布",
196     data\_pair=\[list(z) for z in zip(gender\_counts.index.tolist(), gender\_counts.values.tolist())\],
197     radius=\["40%", "70%"\],
198     rosetype="radius",
199     label\_opts=opts.LabelOpts(is\_show=True, position="outside", font\_size=14,
200                               formatter="{a}<br/>{b}: {c} ({d}%)")
201 )
202 pie.set\_global\_opts(
203     title\_opts=opts.TitleOpts(title="海口市11月份天气分布",pos\_right="50%"),
204     legend\_opts=opts.LegendOpts(orient="vertical", pos\_top="15%", pos\_left="2%"),
205     toolbox\_opts=opts.ToolboxOpts(is\_show=True)
206 )
207 pie.set\_series\_opts(label\_opts=opts.LabelOpts(formatter="{b}: {c} ({d}%)"))
208 html\_content = pie.render\_embed()
209 
210 # 生成HTML文件
211 complete\_html = f"""
212 <html>
213 <head>
214     <title>天气数据分析</title>
215 
216 </head>
217 <body style="background-color: #e87f7f">
218     <div style='margin-top: 20px;background-color='#e87f7f''>
219         <div>{html\_content}</div>
220         <h3>分析报告:</h3>
221         <p>{analysis\_text}</p>
222     </div>
223 </body>
224 </html>
225 """
226 
227 import pandas as pd
228 import matplotlib.pyplot as plt
229 from matplotlib import font\_manager
230 import jieba
231 
232 # 中文字体
233 font\_CN = font\_manager.FontProperties(fname="C:\\Windows\\Fonts\\STKAITI.TTF")
234 
235 # 读取数据
236 df = pd.read\_excel('海口历史天气【2023年11月】.xls')
237 
238 # 使用 jieba 处理数据,去除 "C"
239 df\['最高气温'\] = df\['最高气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
240 df\['最低气温'\] = df\['最低气温'\].apply(lambda x: ''.join(jieba.cut(x))).str.replace('℃', '').astype(float)
241 # 开始绘图
242 plt.figure(figsize=(20, 8), dpi=80)
243 max\_tp = df\['最高气温'\].tolist()
244 min\_tp = df\['最低气温'\].tolist()
245 x\_day = range(1, 31)
246 # 绘制30天最高气温
247 plt.plot(x\_day, max\_tp, label = "最高气温", color = "red")
248 # 绘制30天最低气温
249 plt.plot(x\_day, min\_tp, label = "最低气温", color = "skyblue")
250 # 增加x轴刻度
251 \_xtick\_label = \["11月{}日".format(i) for i in x\_day\]
252 plt.xticks(x\_day, \_xtick\_label, fontproperties=font\_CN, rotation=45)
253 # 添加标题
254 plt.title("2023年11月最高气温与最低气温趋势", fontproperties=font\_CN)
255 plt.xlabel("日期", fontproperties=font\_CN)
256 plt.ylabel("温度(单位°C)", fontproperties=font\_CN)
257 plt.legend(prop = font\_CN)
258 plt.show()
259 
260 from pyecharts.charts import WordCloud
261 from pyecharts import options as opts
262 from pyecharts.globals import SymbolType
263 import jieba
264 import pandas as pd
265 from collections import Counter
266 
267 # 读取Excel文件
268 df = pd.read\_excel('海口历史天气【2023年11月】.xls')
269 # 提取商品名
270 word\_names = df\["风向"\].tolist() + df\["天气"\].tolist()
271 # 提取关键字
272 seg\_list = \[jieba.lcut(text) for text in word\_names\]
273 words = \[word for seg in seg\_list for word in seg if len(word) > 1\]
274 word\_counts = Counter(words)
275 word\_cloud\_data = \[(word, count) for word, count in word\_counts.items()\]
276 
277 # 创建词云图
278 wordcloud = (
279     WordCloud(init\_opts=opts.InitOpts(bg\_color='#00FFFF'))
280         .add("", word\_cloud\_data, word\_size\_range=\[20, 100\], shape=SymbolType.DIAMOND,
281              word\_gap=5, rotate\_step=45,
282              textstyle\_opts=opts.TextStyleOpts(font\_family='cursive', font\_size=15))
283         .set\_global\_opts(title\_opts=opts.TitleOpts(title="天气预报词云图",pos\_top="5%", pos\_left="center"),
284                          toolbox\_opts=opts.ToolboxOpts(
285                              is\_show=True,
286                              feature={
287                                  "saveAsImage": {},
288                                  "dataView": {},
289                                  "restore": {},
290                                  "refresh": {}
291                              }
292                          )
293 
294     )
295 )
296 
297 # 渲染词图到HTML文件
298 wordcloud.render("天气预报词云图.html")

五、总结

1.根据散点图的显示回归方:y = 0.6988742964352719x + 10.877423389618516来获取海口市11月份温度趋势
2.根据饼状图可以了解海口市11月份的天气比例,多云天气占比为53.33%,晴天气占比为26.67%,阴天气占比为13.33%,小雨天气占比为6.67%,
3.根据折线图了解海口市11月份的最高温度和最低温度趋势。
4.根据词云图的显示,可以了解当月的天气质量相关内容。

  • 综述:是通过Python爬虫技术获取天气预报数据,数据爬取方面,通过Python编写爬虫程序,利用网络爬虫技术从天气网站上获取天气预报数据,并进行数据清洗和处理。数据可视化方面,利用数据可视化工具,将存储的数据进行可视化展示,以便用户更直观地了解天气情况_因此用户更好地理解和应用天气数据,从而做出更准确的决策和规划。__

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/403264.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

实战OpenCV之图像显示

基础入门 OpenCV提供的功能非常多&#xff0c;图像显示是最基础也是最直观的一部分。它让我们能够直观地看到算法处理后的效果&#xff0c;对于调试和验证都至关重要。在OpenCV中&#xff0c;图像显示主要依赖于以下四个关键的数据结构和函数。 1、Mat类。这是OpenCV中最基本的…

LeetCode - LCR 146- 螺旋遍历二维数组

LCR 146题 题目描述&#xff1a; 给定一个二维数组 array&#xff0c;请返回「螺旋遍历」该数组的结果。 螺旋遍历&#xff1a;从左上角开始&#xff0c;按照 向右、向下、向左、向上 的顺序 依次 提取元素&#xff0c;然后再进入内部一层重复相同的步骤&#xff0c;直到提取完…

MySQL数据库入门,pycharm连接数据库—详细讲解

一.安装MySQL 1.常用MySQL5.7&#xff0c;首先安装MySQL&#xff0c; &#xff08;一&#xff09; &#xff08;二&#xff09; &#xff08;三&#xff09; &#xff08;四&#xff09; &#xff08;五&#xff09; 2.配置环境变量 打开MySQL安装路径&#xff0c;在其中找到…

ArcGis在线地图插件Maponline(好用版)

ArcGis加载插件&#xff0c;可在线浏览谷歌地图、天地图、高德地图、必应地图等多种&#xff0c;包含街道、影像、标注地图等信息&#xff08;谷歌地图需自备上网手段&#xff09;&#xff0c;免费注册账号即可使用&#xff0c;可加载无水印底图。 与大地2000坐标无需配准直接使…

洛杉物理服务器怎么样?

洛杉矶作为美国科技和互联网的重要中心&#xff0c;物理服务器的质量通常非常高&#xff0c;可以提供卓越的性能、强大的安全性、多样的配置选项和专业的服务支持。以下是对洛杉物理服务器的详细介绍。 1. 优质的性能 稳定的网络连接&#xff1a;洛杉矶物理服务器位于先进的数据…

day32+学习记录

一.算法练习 509.斐波那契数 斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a; F(0) 0&#xff0c;F(1) 1 F(n) F(n - 1) F(n - 2)&#xf…

一键运行RocketMQ5.3和Dashboard

一键运行RocketMQ5.3和Dashboard 目录 一键运行RocketMQ5.3和Dashboard通过Docker Compose 来一键启动运行的容器包括docker-compose.yml文件运行命令启动本地效果查看 参考信息 通过Docker Compose 来一键启动 运行的容器包括 NameServerBrokerProxyDashBoard docker-compo…

关于Qt的系统总结

查看详情http://100bcw.com/qt6.htm 编译环境与开发流程 开发QT有两种IDE可以使用,一种是使用 VS + Qt 的插件,另一种就是使用QtCreator工具。前一种是微软的工具,用的都比较多容易上手,缺点是信号槽的支持不太好,需要手写,不能自动生成,另外可能有中文编码的问题。后一…

c语言 图片.bmp读写示例

1 图片.bmp数据结构 BMP&#xff08;Bitmap&#xff09;文件格式是一种简单的位图图像格式&#xff0c;其数据结构分为几个主要部分&#xff1a;文件头、信息头、调色板&#xff08;可选&#xff09;和像素数据。下面是各部分的详细说明。 文件头&#xff08;File Header&…

东晟时尚服饰文化传承与发展研发中心成立

近期&#xff0c;东晟时尚创新科技&#xff08;北京&#xff09;有限公司宣布成立东晟时尚服饰文化传承与发展研发中心&#xff0c;此举标志着公司在促进中国传统文化与现代时尚产业结合方面迈出了关键步伐。 作为一家在时尚科技推广和设计研发应用服务领域具有战略眼光的企业&…

【问题记录+总结】VS Code Tex Live 2024 Latex Workshop Springer模板----更新ing

目录 Summary 道阻且长 少即是多 兵马未动粮草先行 没有万能 和一劳永逸 具体问题具体分析 心态 Detail 1、关于模板[官网] 2、settings.json 3、虫和杀虫剂 4、擦 换成Tex Studio都好了。。。 Summary 道阻且长 某中意期刊&#xff0c;只有Latex。之前只简单用过…

部署 K8s 图形化管理工具 Dashboard

文章目录 一、Dashboard 概述二、GitHub 地址三、Dashboard 部署安装1、选择兼容版本2、下载配置文件3、添加 Dashboard 的Service类型4、应用部署5、查看 kubernetes-dashboard 命名空间下资源状态6、创建访问账户7、授权8、获取账号token9、1.24 版本以后的需要创建一个Pod 四…

C++ 11相关新特性(lambda表达式与function包装器)

目录 lambda表达式 引入 lambda表达式介绍 lambda表达式捕捉列表的传递形式 lambda表达式的原理 包装器 包装器的基本使用 包装器与重载函数 包装器的使用 绑定 C 11 新特性 lambda表达式 引入 在C 98中&#xff0c;对于sort函数来说&#xff0c;如果需要根据不同的比较方式实现…

自闭症青年的行为特征有哪些

自闭症&#xff0c;又称孤独症&#xff0c;是一种神经发育障碍&#xff0c;它不仅影响儿童的成长&#xff0c;也会在青年时期展现出一系列独特的行为特征。了解这些特征对于更好地支持和帮助自闭症青年融入社会至关重要。 社交互动方面的困难是自闭症青年较为显著的特征之一。他…

Kubectl 常用命令汇总大全

kubectl 是 Kubernetes 自带的客户端&#xff0c;可以用它来直接操作 Kubernetes 集群。 从用户角度来说&#xff0c;kubectl 就是控制 Kubernetes 的驾驶舱&#xff0c;它允许你执行所有可能的 Kubernetes 操作&#xff1b;从技术角度来看&#xff0c;kubectl 就是 Kubernetes…

openEuler系统安装Visual Studio Code

openEuler系统安装Visual Studio Code 背景安装密钥和存储库更新包缓存并使用dnf安装包Fedora 22及以上版本旧版本使用yum 安装过程截图安装成功看桌面效果 背景 openEuler(openEuler-24.03-LTS)安装了麒麟UKUI桌面但是没有麒麟软件商店想安装Visual Studio Code 安装密钥和…

专业剪辑新选择!2024年TOP榜达芬奇剪辑软件VS三大劲敌的较量

到了2024年&#xff0c;科技飞快地进步&#xff0c;视频剪辑这一块儿也变了不少。老的剪辑方法一直被刷新&#xff0c;新的软件一个接一个冒出来&#xff0c;像达芬奇剪辑软件这样的&#xff0c;都成了拍视频的人的好伙伴。咱们今天就来聊聊这几款软件有啥神奇的&#xff0c;比…

安全基础学习-RC4加密算法

这里仅仅记录一些基础的概念。后期有需求进一步扩展。 RC4 是一种对称流加密算法&#xff0c;由罗恩里维斯特&#xff08;Ron Rivest&#xff09;于1987年设计。RC4 的设计目的是提供一种简单且高效的加密方法。尽管 RC4 曾经广泛使用&#xff0c;但它的安全性在现代已受到质疑…

Modbus 通信协议详解

目录 一、概述二、Modbus 的作用三、Modbus 的工作原理1、四种数据类型2、三种工作模式3、三类功能码3.1 标志功能码3.2 Modbus 封装接口3.3 异常 4、Modbus 协议层4.1 协议数据单元4.2 访问数据4.3 数据模型寻址4.3.1 数据寻址范围4.3.2 数据地址起始值 4.4 大数据类型4.4.1 位…

Java面试题———分布式篇

目录 1、什么是分布式事务 2、什么是CAP理论 3、为什么分布式系统中无法同时AC 4、什么是BASE理论 5、分布式事务的解决方案有哪些 6、Seata的架构是什么 7、XA模式的工作流程是什么 8、AT模型的工作原理是什么 9、TCC模型的工作原理是什么 1、什么是分布式事务 在分…