Java二十三种设计模式-责任链模式(17/23)

责任链模式:实现请求处理的灵活流转

引言

在这篇博客中,我们深入探讨了责任链模式的精髓,从其定义和用途到实现方法,再到使用场景、优缺点、与其他模式的比较,以及最佳实践和替代方案,旨在指导开发者如何在适当的场景下有效运用这一模式来提高软件设计的灵活性和可维护性。

 基础知识,java设计模式总体来说设计模式分为三大类:

(1)创建型模式,共5种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

(2)结构型模式,共7种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

(3)行为型模式,共11种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

第一部分:责任链模式概述

1.1 定义与用途

责任链模式的基本定义

责任链模式(Chain of Responsibility Pattern)是一种行为型设计模式,它允许将请求沿着处理者链进行传递,直到某个处理者能够处理该请求为止。

责任链模式是一种行为型设计模式,它通过将请求的发送者和接收者解耦,将这些请求沿着一条链传递,直到链上的某个节点能够处理该请求。这种模式允许系统在运行时动态地添加或修改处理请求的方式,而无需修改已有的代码。

解释为何需要责任链模式

  • 解耦请求者和处理者:责任链模式使得请求的发送者不需要知道具体的处理者是谁,只需要将请求发送到链上即可。
  • 动态处理请求:可以根据需要动态地添加或删除链上的处理者,或者改变它们的处理顺序。
  • 灵活性和可扩展性:当需要支持多种类型的请求或处理方式时,责任链模式提供了一种灵活的解决方案。
  • 简化对象的相互通信:减少了对象之间的直接交互,简化了对象间的关系。

1.2 责任链模式的组成

处理者(Handler)

  • 定义:处理者是一个接口,定义了处理请求的方法和一个指向下一个处理者的引用。
  • 职责:每个具体的处理者需要实现这个接口,并决定是否能够处理接收到的请求。

请求(Request)

  • 定义:请求是传递给处理者的对象,通常包含一些数据和信息,描述了需要被处理的事项。
  • 职责:作为处理者链中传递的信息载体。

上下文(Context)

  • 定义:上下文是请求的起始点,它知道如何创建和维护处理者链。
  • 职责:创建请求并将其传递给链上的首个处理者。

具体处理者(Concrete Handler)

  • 定义:具体处理者实现了处理者接口,具体实现了请求处理的逻辑。
  • 职责:根据请求的类型和内容决定是否处理请求,如果能够处理,则执行相应操作;否则,将请求传递给链上的下一个处理者。

角色之间的交互

  • 请求创建:上下文创建请求并将其传递给链上的第一个处理者。
  • 请求传递:每个处理者检查请求,决定是否能够处理它。如果能够处理,则执行操作;否则,将请求传递给链上的下一个处理者。
  • 请求处理:请求沿着处理者链传递,直到被某个处理者处理。

责任链模式通过将请求的发送者和接收者解耦,提供了一种灵活的方式来处理请求,使得在不修改现有代码的情况下,可以动态地改变请求的处理方式。在下一部分中,我们将通过Java代码示例来展示责任链模式的具体实现。

第二部分:责任链模式的实现

2.1 Java实现示例

以下是使用Java语言实现责任链模式的代码示例。假设我们有一个简单的审批系统,根据不同的审批金额,需要不同级别的经理来批准。

// 处理者接口
interface Approver {void setNextApprover(Approver next);void approve(PurchaseRequest request);
}// 具体处理者:主任
class DirectorApprover implements Approver {private Approver nextApprover;@Overridepublic void setNextApprover(Approver next) {this.nextApprover = next;}@Overridepublic void approve(PurchaseRequest request) {if (request.getAmount() <= 5000) {System.out.println("Director approved: " + request);} else {if (nextApprover != null) {nextApprover.approve(request);} else {System.out.println("No more approvers in the chain.");}}}
}// 具体处理者:部门经理
class ManagerApprover implements Approver {private Approver nextApprover;@Overridepublic void setNextApprover(Approver next) {this.nextApprover = next;}@Overridepublic void approve(PurchaseRequest request) {if (request.getAmount() <= 10000) {System.out.println("Manager approved: " + request);} else {if (nextApprover != null) {nextApprover.approve(request);} else {System.out.println("No more approvers in the chain.");}}}
}// 请求类
class PurchaseRequest {private double amount;private String purpose;public PurchaseRequest(double amount, String purpose) {this.amount = amount;this.purpose = purpose;}@Overridepublic String toString() {return "PurchaseRequest{Amount: " + amount + ", Purpose: '" + purpose + "'}";}
}// 客户端代码
public class Client {public static void main(String[] args) {Approver managerApprover = new ManagerApprover();Approver directorApprover = new DirectorApprover();managerApprover.setNextApprover(directorApprover);PurchaseRequest request1 = new PurchaseRequest(7000, "Office supplies");managerApprover.approve(request1);PurchaseRequest request2 = new PurchaseRequest(15000, "Conference equipment");managerApprover.approve(request2);}
}

2.2 责任链中的角色和职责

处理者(Handler)

  • 职责:定义了一个处理请求的接口,包括设置下一个处理者的方法和处理请求的方法。

请求(Request)

  • 职责:封装了请求的详细信息,可以被处理者链中的任何一个处理者访问和处理。

上下文(Context)

  • 职责:在本示例中,上下文由客户端代码充当,负责创建请求并启动责任链的处理过程。

具体处理者(Concrete Handler)

  • 职责:实现了处理者接口,具体实现了请求处理的逻辑,包括判断请求是否在自己的处理范围内,以及将请求传递给链上的下一个处理者。

相互作用

  • 设置链:客户端代码负责构建责任链,通过setNextApprover方法将各个处理者连接起来。
  • 请求传递:请求从链的开始传递,每个处理者决定是否处理请求或将其传递给下一个处理者。
  • 请求处理:请求最终被能够处理它的处理者处理,或者到达链的末端仍未被处理。

责任链模式通过定义清晰的处理者角色和请求传递机制,实现了请求的动态分发和处理。这种模式在需要灵活处理请求的场景中非常有用,尤其是在请求的处理流程可能变化的情况下。在下一部分中,我们将探讨责任链模式的使用场景。

第三部分:责任链模式的使用场景

3.1 需要灵活处理请求的场景

在软件系统中,经常会遇到需要根据不同的条件以不同方式处理请求的场景。责任链模式通过将请求的发送者和接收者解耦,提供了一种灵活处理请求的方法。

讨论在需要灵活处理请求时,责任链模式的应用:

  • 多样化处理:在不同的处理者中实现不同的业务逻辑,可以根据请求的内容选择不同的处理策略。
  • 易于扩展:当需要添加新的处理方式时,只需添加一个新的处理者类,并将其加入到责任链中,无需修改现有代码。

应用实例:

  • 审批流程:在企业审批流程中,不同的审批级别可能需要不同角色的审批。责任链模式可以灵活地表示这种多级审批流程。
  • 权限验证:在权限验证系统中,可能需要根据不同的用户角色和资源类型进行不同的权限检查。

3.2 请求处理者动态指定的场景

在某些情况下,请求的处理者可能不是预设的,而是根据运行时的条件动态确定的。责任链模式允许在运行时构建处理者链,从而动态地指定请求的处理者。

分析在请求处理者可以动态指定时,责任链模式的优势:

  • 动态构建:可以根据请求的类型或内容动态地构建责任链,使得处理流程更加灵活。
  • 可配置性:通过外部配置或规则引擎来定义责任链的组成和顺序,提高了系统的可配置性。

应用实例:

  • 工作流引擎:在工作流引擎中,任务的处理顺序和处理者可以根据工作流的定义动态确定。
  • 内容管理系统:在内容管理系统中,不同类型或不同优先级的内容可能需要不同的审核流程和审核人员。

责任链模式通过允许请求沿着链传递,直到被适当处理,提供了一种强大的方法来处理请求。这种模式在实际开发中非常有价值,尤其是在需要处理多样化请求或请求处理流程可能变化的情况下。在下一部分中,我们将讨论责任链模式的优点与缺点。

 

第四部分:责任链模式的优点与缺点

4.1 优点

降低耦合度

  • 解耦请求者和处理者:责任链模式使得请求的发送者和接收者之间没有直接的联系,两者通过责任链进行交互,从而降低了耦合度。

提高系统的灵活性

  • 动态调整处理流程:可以在运行时根据需要动态地调整处理流程,如添加、删除或重新排列处理者。

易于扩展

  • 扩展新的处理者:添加新的处理者不需要修改现有代码,符合开闭原则。

简化对象交互

  • 减少直接交互:减少了对象之间的直接交互,简化了对象间的关系。

支持多样化的请求处理

  • 多种处理策略:允许系统支持多种不同的请求处理策略。

4.2 缺点

处理效率问题

  • 性能开销:请求可能需要在多个处理者之间传递,可能会带来性能开销。

请求可能无法被处理

  • 处理者缺失:如果责任链中没有处理者能够处理请求,可能会导致请求被忽略或处理失败。

调试困难

  • 问题定位:在责任链中定位问题可能比较困难,特别是当链比较长或处理逻辑复杂时。

责任链的建立和管理

  • 链的维护:需要管理责任链的建立和维护,确保链的正确性。

可能引起循环引用

  • 循环链:如果不当使用,责任链可能导致循环引用,从而引起无限循环。

责任链模式提供了一种灵活的方式来处理请求,允许请求沿着链传递,直到被适当处理。然而,它也需要谨慎使用,以避免增加系统的复杂性和维护难度。在实际应用中,根据具体需求和场景选择是否使用责任链模式是非常重要的。在下一部分中,我们将比较责任链模式与其他设计模式,并提供一些最佳实践和建议。

 

第五部分:责任链模式与其他模式的比较

5.1 与命令模式的比较

命令模式

  • 定义:命令模式将请求或操作封装为一个对象,允许用户使用不同的请求对客户进行参数化。
  • 特点:命令模式关注于将请求封装成对象,从而允许系统使用不同的请求、队列请求或记录请求。

责任链模式

  • 定义:如前所述,责任链模式通过将请求沿着链传递,直到链上的某个节点能够处理该请求。
  • 特点:责任链模式关注于请求的传递和处理,允许多个对象都有机会处理请求。

对比

  • 请求封装:命令模式强调请求的封装和存储,责任链模式强调请求的传递和处理。
  • 处理方式:命令模式通常由调用者直接执行命令,责任链模式则由多个潜在的处理者依次尝试处理请求。
  • 目的:命令模式用于支持撤销、重做等操作,责任链模式用于实现请求处理的链式传递。

5.2 与中介者模式的对比

中介者模式

  • 定义:中介者模式定义了一个中介对象,用于封装一系列对象之间的交互,从而减少这些对象之间的耦合度。
  • 特点:中介者模式关注于减少对象间的直接交互,通过中介者进行通信。

责任链模式

  • 定义:如前所述,责任链模式允许请求沿着处理者链进行传递,直到被适当处理。

对比

  • 通信方式:中介者模式通过中介者对象来转发请求和响应,责任链模式则通过链式传递请求。
  • 解耦合:中介者模式通过中介者来解耦对象间的直接引用,责任链模式通过分离请求者和处理者来解耦。
  • 灵活性:责任链模式提供了处理请求的灵活性,中介者模式提供了通信方式的灵活性。

责任链模式和命令模式、中介者模式都提供了处理请求的不同方法。每种模式都有其独特的用途和优势,选择使用哪种模式取决于具体的设计需求和场景。在下一部分中,我们将提供责任链模式的最佳实践和建议。

 

第六部分:责任链模式的最佳实践和建议

6.1 最佳实践

确保处理者链的明确终止条件

  • 终止条件:确保责任链有明确的终止条件,防止请求无限循环。

保持处理者职责单一

  • 单一职责原则:每个处理者应该只处理一种类型的请求,保持职责单一。

使用享元模式优化处理者

  • 享元模式:如果处理者之间有共享的资源或状态,可以使用享元模式来优化内存使用。

提供灵活的链构建方式

  • 灵活构建:提供灵活的方式来构建责任链,如通过配置文件或程序逻辑。

确保线程安全

  • 线程安全:在多线程环境中使用责任链模式时,确保处理者是线程安全的。

避免过度复杂的责任链

  • 简化设计:避免构建过于复杂或过长的责任链,以免增加系统的复杂性和降低性能。

6.2 避免滥用

避免在简单场景使用责任链模式

  • 简化解决方案:对于简单的请求处理,使用责任链模式可能过于复杂,应考虑更简单的解决方案。

避免处理者之间的过度耦合

  • 解耦合:保持处理者之间的松耦合,避免它们之间的依赖关系过于紧密。

避免缺乏明确的终止条件

  • 明确终止:确保责任链有明确的终止条件,防止请求处理过程中的不确定性。

6.3 替代方案

使用状态模式

  • 状态变化:当对象的状态变化需要改变其行为时,可以考虑使用状态模式。

使用策略模式

  • 算法替换:如果需要根据不同的条件执行不同的算法或行为,策略模式可能是一个更好的选择。

使用命令模式

  • 命令封装:对于需要将请求或操作封装为对象的场景,命令模式可以提供帮助。

使用中介者模式

  • 减少耦合:当系统中对象之间的通信过于复杂时,中介者模式可以减少对象间的直接耦合。

责任链模式提供了一种灵活的方式来处理请求,允许请求沿着处理者链进行传递,直到被适当处理。然而,合理使用责任链模式并避免其缺点是至关重要的。了解其替代方案可以帮助开发者根据具体需求和场景选择最合适的设计模式。在实际开发中,应根据具体情况灵活运用责任链模式,以达到最佳的设计效果。

结语

责任链模式提供了一种强大的方法来处理请求,允许请求沿着处理者链进行传递,直到被适当处理。通过本文的深入分析,希望读者能够对责任链模式有更全面的理解,并在实际开发中做出合理的设计选择。

博主还写了其他Java设计模式关联文章,请各位大佬批评指正:

(一)创建型模式(5种):

Java二十三种设计模式-单例模式(1/23)

Java二十三种设计模式-工厂方法模式(2/23)

Java二十三种设计模式-抽象工厂模式(3/23)

Java二十三种设计模式-建造者模式(4/23)

Java二十三种设计模式-原型模式(5/23)

(二)结构型模式(7种): 

Java二十三种设计模式-适配器模式(6/23)

Java二十三种设计模式-装饰器模式(7/23)

Java二十三种设计模式-代理模式(8/23)

Java二十三种设计模式-外观模式(9/23)

Java二十三种设计模式-桥接模式(10/23)

Java二十三种设计模式-组合模式(11/23)

Java二十三种设计模式-享元模式(12/23)

 (三)行为型模式(11种): 

Java二十三种设计模式-策略模式(13/23)

Java二十三种设计模式-模板方法模式(14/23)

Java二十三种设计模式-观察者模式(15/23)

Java二十三种设计模式-迭代子模式(16/23)

持续更新中......敬请关注 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/404212.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++:平衡二叉搜索树之红黑树

一、红黑树的概念 红黑树&#xff0c; 和AVL都是二叉搜索树&#xff0c; 红黑树通过在每个节点上增加一个储存位表示节点的颜色&#xff0c; 可以是RED或者BLACK&#xff0c; 通过任何一条从根到叶子的路径上各个节点着色方式的限制&#xff0c;红黑树能够确保没有一条路径会比…

Selenium + Python 自动化测试12(unittest组织更多用例)

我们的目标是&#xff1a;按照这一套资料学习下来&#xff0c;大家可以独立完成自动化测试的任务。 上一篇我们讨论了unittest中test suite 的构建&#xff0c;可以测试多条测试用例。 本篇文章我们接着讲。使用discover()方法构建更多的测试用例。 1、引入需要完成的任务 上…

【网络编程】基于UDP的TFTP文件传输

1&#xff09;tftp协议概述 简单文件传输协议&#xff0c;适用于在网络上进行文件传输的一套标准协议&#xff0c;使用UDP传输 特点&#xff1a; 是应用层协议 基于UDP协议实现 数据传输模式 octet&#xff1a;二进制模式&#xff08;常用&#xff09; mail&#xff1a;已经不再…

Linux进程间通信学习记录(IPC 机制、共享内存以及信号灯集)

0.System V IPC机制&#xff1a; ①.IPC对象包含&#xff1a;共享内存、消息队列和信号灯集。 ②.每个IPC对象有唯一的ID。 ③.IPC对象创建后一直存在&#xff0c;直到被显示地删除。 ④.每一个IPC对象有一个关联的KEY。&#xff08;其他进程通过KEY访问对应的IPC对象&#xff…

Ubuntu安装Anaconda3

本文详细阐述了在 Ubuntu 系统中安装 Anaconda3 的完整流程。包括 Anaconda3 安装包的获取途径&#xff0c;具体安装过程中的每一个步骤及注意事项&#xff0c;还有安装后的环境变量设置和安装成功的验证方法。旨在为 Ubuntu 用户提供清晰、易懂且准确的 Anaconda3 安装指南&am…

Unity--AssetBundle AB包管理器

1.简介 AB包&#xff08;AssetBundle&#xff09;是Unity中用于资源管理的一种机制&#xff0c;它允许开发者将多个文件&#xff08;如纹理、模型、音频等&#xff09;打包成一个单独的文件&#xff0c;以便于在游戏运行时动态加载和卸载。 但是现在出现了最新的Addressable来…

docker部署drawio

1&#xff09;介绍Drawio.io GitHub&#xff1a;GitHub - jgraph/drawio: draw.io is a JavaScript, client-side editor for general diagramming. Draw.io是一款开源的绘制流程图的工具&#xff0c;拥有大量免费素材和模板。程序本身支持中文在内的多国语言&#xff0c;创建…

【学习笔记】多元线性回归模型 —— Matlab

文章目录 前言一、多元线性回归多元线性回归模型线性模型 ( Y , X β , σ 2 I n ) (Y,X\beta,\sigma^2I_n) (Y,Xβ,σ2In​) 考虑的主要问题多元线性回归模型的参数估计多元线性回归模型和回归系数的检验 二、示例三、代码实现----Matlab1.多元回归的实现2.逐步回归的实现3.M…

图像增强技术简介

目录 一、概论 二、图像噪声 三、图像增强处理分类 一、概论 图像增强作为基本的图像处理技术&#xff0c;其目的是对图像进行加工&#xff0c;以得到对具体应用来说视觉效果更“好”更“有用”的图像。图像增强算法并不能增加原始图像的信息&#xff0c;而是通过某种技术手…

MVCC 详解

MVCC 简单理解 MVCC&#xff0c;全称 Multi-Version Concurrency Control&#xff0c;是多版本并发控制的意思。 在高并发情况下操作数据库可能会出现脏写、脏读、不可重复度、幻读这四个问题。通过 MVCC 可以实现在不加锁的前提下避免一些问题。 MVCC 的实现原理 多版本 …

相似度计算方法-编辑距离 (Edit Distance)

定义 编辑距离&#xff08;Edit Distance&#xff09;&#xff0c;也称为Levenshtein距离&#xff0c;是一种衡量两个字符串相似度的方法。它定义为从一个字符串转换为另一个字符串所需的最少单字符编辑操作次数&#xff0c;这些操作包括插入、删除或替换一个字符。 计算方法 …

Openstack二层网络的构建和使用

Openstack二层网络的构建和使用 一、实验目的 &#xff08;1&#xff09;了解网络层级、子网、动态地址、网关代理等概念并进行应用。 &#xff08;2&#xff09;了解OpenStack项目以及相关组件。 &#xff08;3&#xff09;了解 Neutron 二层网络的构建和使用。 二、实验原…

tomcat Listener 内存马浅谈

本文来源无问社区&#xff0c;更多实战内容可前往查看http://www.wwlib.cn/index.php/artread/artid/3651.html Tomcat 介绍 Tomcat的主要功能 toncat作为一个web服务器&#xff0c;实现了两个核心的功能 http 服务器功能&#xff1a;进行socket 通信&#xff08;基于TCP/I…

案例分享—国外深色UI界面设计赏析

在国外&#xff0c;深色界面设计&#xff08;Dark Mode&#xff09;已成为提升用户体验的重要趋势。它不仅有效减少屏幕亮度&#xff0c;保护用户视力&#xff0c;还能在夜晚或低光环境下提供更加舒适的浏览体验。设计师们普遍认识到&#xff0c;深色主题不仅提升了应用的视觉层…

Vue中下载内容为word文档

1.使用 html-docx-js&#xff1a;这是一个将 HTML 转换为 Word 文档的库。 2. 利用 Blob 和 FileSaver.js&#xff1a;创建并下载生成的 Word 文档。 在 Vue.js 中实现步骤如下: 1. npm 安装 html-docx-js 和 file-saver npm install html-docx-js npm install file-saver2.…

【vue教程】六. Vue 的状态管理

目录 往期列表本章涵盖知识点回顾Vuex 的基本概念什么是 Vuex&#xff1f;为什么需要 Vuex&#xff1f; Vuex 的核心概念stategettersmutationsactionsmodules Vuex 的安装和基本使用安装 Vuex创建 store在 Vue 应用中使用 store在组件中访问和修改状态 Vuex 的模块化模块化的好…

2024新型数字政府综合解决方案(七)

新型数字政府综合解决方案通过集成人工智能、大数据、区块链和云计算技术&#xff0c;创建了一个高度智能化和互联互通的政府服务平台&#xff0c;旨在全面提升行政效率、服务质量和透明度。该平台实现了跨部门的数据整合与实时共享&#xff0c;利用人工智能进行智能决策支持和…

PCRNet: Point Cloud Registration Network using PointNet Encoding 论文解读

目录 一、导言 二、先导知识 1、Frobenius范数 三、相关工作 1、点云配准工作 2、PointNet 3、基于深度学习的点云配准 四、PCRNet 1、PCRNet 2、Iterative PCRNet 3、损失函数 五、实验 一、导言 本论文收录于CVPR2019&#xff0c;本论文提出了一种依赖PointNet网…

11.2.0.4 RAC 节点1重做操作系统后如何复原

环境描述&#xff1a;Redhat7.9 11.2.0.4 RAC 双节点 实验背景 群里有大佬在交流RAC中1个节点操作系统坏了如何修复&#xff0c;故有了该实验。 在正常的生产环境当中&#xff0c;有时候会遇到主机磁盘以及其他硬件故障导致主机OS系统无法启动&#xff0c;或者OS系统本身故障…

【海奇HC-RTOS平台E100-问题点】

海奇HC-RTOS平台E100-问题点 ■ btn 没有添加到group中 &#xff0c;怎么实现的事件的■ 屏幕是1280*720, UI是1024*600,是否修改UI■ hc15xx-db-e100-v10-hcdemo.dtb 找不到■ 触摸屏驱动 能否给个实例■ 按键驱动■ __initcall(projector_auto_start)■ source insigt4.0 #if…