Python酷库之旅-第三方库Pandas(097)

目录

一、用法精讲

416、pandas.DataFrame.memory_usage方法

416-1、语法

416-2、参数

416-3、功能

416-4、返回值

416-5、说明

416-6、用法

416-6-1、数据准备

416-6-2、代码示例

416-6-3、结果输出

417、pandas.DataFrame.empty属性

417-1、语法

417-2、参数

417-3、功能

417-4、返回值

417-5、说明

417-6、用法

417-6-1、数据准备

417-6-2、代码示例

417-6-3、结果输出

418、pandas.DataFrame.set_flags方法

418-1、语法

418-2、参数

418-3、功能

418-4、返回值

418-5、说明

418-6、用法

418-6-1、数据准备

418-6-2、代码示例

418-6-3、结果输出

419、pandas.DataFrame.astype方法

419-1、语法

419-2、参数

419-3、功能

419-4、返回值

419-5、说明

419-6、用法

419-6-1、数据准备

419-6-2、代码示例

419-6-3、结果输出

420、pandas.DataFrame.convert_dtypes方法

420-1、语法

420-2、参数

420-3、功能

420-4、返回值

420-5、说明

420-6、用法

420-6-1、数据准备

420-6-2、代码示例

420-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

416、pandas.DataFrame.memory_usage方法
416-1、语法
# 416、pandas.DataFrame.memory_usage方法
pandas.DataFrame.memory_usage(index=True, deep=False)
Return the memory usage of each column in bytes.The memory usage can optionally include the contribution of the index and elements of object dtype.This value is displayed in DataFrame.info by default. This can be suppressed by setting pandas.options.display.memory_usage to False.Parameters:
index
bool, default True
Specifies whether to include the memory usage of the DataFrame’s index in returned Series. If index=True, the memory usage of the index is the first item in the output.deep
bool, default False
If True, introspect the data deeply by interrogating object dtypes for system-level memory consumption, and include it in the returned values.Returns:
Series
A Series whose index is the original column names and whose values is the memory usage of each column in bytes.
416-2、参数

416-2-1、index(可选,默认值为True)布尔值,指定是否包括行索引在内存使用的计算中,如果为True,则行索引所占的内存也会被计算在内;如果为False,则只计算列的内存使用。

416-2-2、deep(可选,默认值为False)布尔值,如果为True,将进行更深入的内存使用分析,这意味着它会对对象类型的列进行更详细的内存消耗计算,尤其是字符串类型的列,默认为False,这时只返回基本的内存使用量。

416-3、功能

        帮助你了解DataFrame的内存使用情况,从而进行性能优化和资源管理。

416-4、返回值

        返回一个Series对象,其中索引为DataFrame的列名(以及行索引,如果index=True),值为相应列(和行索引)的内存使用量(以字节为单位),如果deep=True,则返回的值将更准确地反映对象的内存消费。

416-5、说明

        无

416-6、用法
416-6-1、数据准备
416-6-2、代码示例
# 416、pandas.DataFrame.memory_usage方法
import pandas as pd
# 创建一个DataFrame
data = {'A': [1, 2, 3],'B': ['foo', 'bar', 'baz'],'C': [4.5, 5.5, 6.5]
}
df = pd.DataFrame(data)
# 获取内存使用情况,包括行索引
memory_usage_inclusive = df.memory_usage(index=True)
# 获取内存使用情况,不包括行索引
memory_usage_exclusive = df.memory_usage(index=False)
# 深度计算内存使用情况
deep_memory_usage = df.memory_usage(deep=True)
print("内存使用(包括索引):\n", memory_usage_inclusive)
print("\n内存使用(不包括索引):\n", memory_usage_exclusive)
print("\n深度内存使用:\n", deep_memory_usage)
416-6-3、结果输出
# 416、pandas.DataFrame.memory_usage方法
# 内存使用(包括索引):
#  Index    132
# A         24
# B         24
# C         24
# dtype: int64
# 
# 内存使用(不包括索引):
#  A    24
# B    24
# C    24
# dtype: int64
# 
# 深度内存使用:
#  Index    132
# A         24
# B        180
# C         24
# dtype: int64
417、pandas.DataFrame.empty属性
417-1、语法
# 417、pandas.DataFrame.empty属性
pandas.DataFrame.empty
Indicator whether Series/DataFrame is empty.True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.Returns:
bool
If Series/DataFrame is empty, return True, if not return False.
417-2、参数

        无

417-3、功能

        用于检查一个DataFrame是否为空。具体来说,它用于判断DataFrame是否没有任何数据(即没有行),返回一个布尔值。

417-4、返回值

        返回True如果DataFrame没有任何行;返回False如果DataFrame至少有一行数据。

417-5、说明

        无

417-6、用法
417-6-1、数据准备
417-6-2、代码示例
# 417、pandas.DataFrame.empty属性
import pandas as pd
# 创建一个空的DataFrame
empty_df = pd.DataFrame()
# 创建一个非空的DataFrame
data = {'A': [1, 2, 3],'B': ['foo', 'bar', 'baz'],
}
non_empty_df = pd.DataFrame(data)
# 检查是否为空
print("empty_df是否为空:", empty_df.empty)
print("non_empty_df是否为空:", non_empty_df.empty)
417-6-3、结果输出
# 417、pandas.DataFrame.empty属性
# empty_df是否为空: True
# non_empty_df是否为空: False
418、pandas.DataFrame.set_flags方法
418-1、语法
# 418、pandas.DataFrame.set_flags方法
pandas.DataFrame.set_flags(*, copy=False, allows_duplicate_labels=None)
Return a new object with updated flags.Parameters:
copybool, default False
Specify if a copy of the object should be made.NoteThe copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.You can already get the future behavior and improvements through enabling copy on write pd.options.mode.copy_on_write = Trueallows_duplicate_labelsbool, optional
Whether the returned object allows duplicate labels.Returns:
Series or DataFrame
The same type as the caller.
418-2、参数

418-2-1、copy(可选,默认值为False)布尔值,是否创建一个新的DataFrame副本,如果设置为True,会返回一个新的DataFrame副本;如果为False,则返回原始DataFrame(只会更改标志属性)。

418-2-2、allows_duplicate_labels(可选,默认值为None)布尔值,用于指示是否允许重复标签,如果设置为True,那么DataFrame可以有重复的行或列标签;如果设置为False,则不允许重复标签;如果设置为None,将保持当前状态不变。

418-3、功能

        允许你设置特定的标志,如复制行为和是否允许重复标签,这些标志有助于控制DataFrame的一些基本特性和运行时行为。

418-4、返回值

        返回一个新的DataFrame(如果copy=True),或返回原始DataFrame的视图(如果copy=False),并更新了设置的标志属性。

418-5、说明

        无

418-6、用法
418-6-1、数据准备
418-6-2、代码示例
# 418、pandas.DataFrame.set_flags方法
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 2, 3],'B': [4, 5, 6]
})
# 设置allows_duplicate_labels为True
new_df = df.set_flags(allows_duplicate_labels=True)
# 查看标志
print(df.flags.allows_duplicate_labels)
print(new_df.flags.allows_duplicate_labels)
# 通过设置copy=True来创建一个新的DataFrame副本
copy_df = df.set_flags(copy=True)
# 检查副本
print(copy_df is df)  
418-6-3、结果输出
# 418、pandas.DataFrame.set_flags方法
# True
# True
# False
419、pandas.DataFrame.astype方法
419-1、语法
# 419、pandas.DataFrame.astype方法
pandas.DataFrame.astype(dtype, copy=None, errors='raise')
Cast a pandas object to a specified dtype dtype.Parameters:
dtypestr, data type, Series or Mapping of column name -> data type
Use a str, numpy.dtype, pandas.ExtensionDtype or Python type to cast entire pandas object to the same type. Alternatively, use a mapping, e.g. {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types.copybool, default True
Return a copy when copy=True (be very careful setting copy=False as changes to values then may propagate to other pandas objects).NoteThe copy keyword will change behavior in pandas 3.0. Copy-on-Write will be enabled by default, which means that all methods with a copy keyword will use a lazy copy mechanism to defer the copy and ignore the copy keyword. The copy keyword will be removed in a future version of pandas.You can already get the future behavior and improvements through enabling copy on write pd.options.mode.copy_on_write = Trueerrors{‘raise’, ‘ignore’}, default ‘raise’
Control raising of exceptions on invalid data for provided dtype.raise : allow exceptions to be raisedignore : suppress exceptions. On error return original object.Returns:
same type as caller.
419-2、参数

419-2-1、dtype(必须)描述要转换的目标数据类型,可以是单个数据类型(如float、int、str等)或一个字典,字典的键是列名,值是对应的目标数据类型。如果只针对单个列,可以使用一个字符串表示数据类型。

419-2-2、copy(可选,默认值为None)布尔值,指示是否创建一个新的DataFrame副本,如果设置为True,则会强制创建一个新副本;如果为False,则会尝试在可能的情况下直接在原DataFrame上进行更改。

419-2-3、errors(可选,默认值为'raise')字符串,定义在数据类型转换过程中发生错误时的行为。

  • 'raise':发生错误时引发异常。
  • 'ignore':发生错误时返回原始数据,不进行转换。
419-3、功能

        用于转换DataFrame中数据类型的方法,通过该方法,你可以将DataFrame的列转换为指定的数据类型。

419-4、返回值

        返回一个新的DataFrame,其中数据类型已被转换为指定的类型。

419-5、说明

        无

419-6、用法
419-6-1、数据准备
419-6-2、代码示例
# 419、pandas.DataFrame.astype方法
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': ['1', '2', '3'],'B': ['4.0', '5.1', '6.2']
})
# 查看原始数据类型
print(df.dtypes)
# 将列A转换为整数,将列B转换为浮点数
df_converted = df.astype({'A': 'int', 'B': 'float'})
# 查看转换后的数据类型
print(df_converted.dtypes)
# 打印转换后的数据
print(df_converted)
419-6-3、结果输出
# 419、pandas.DataFrame.astype方法
# A    object
# B    object
# dtype: object
# A      int32
# B    float64
# dtype: object
#    A    B
# 0  1  4.0
# 1  2  5.1
# 2  3  6.2
420、pandas.DataFrame.convert_dtypes方法
420-1、语法
# 420、pandas.DataFrame.convert_dtypes方法
pandas.DataFrame.convert_dtypes(infer_objects=True, convert_string=True, convert_integer=True, convert_boolean=True, convert_floating=True, dtype_backend='numpy_nullable')
Convert columns to the best possible dtypes using dtypes supporting pd.NA.Parameters:
infer_objectsbool, default True
Whether object dtypes should be converted to the best possible types.convert_stringbool, default True
Whether object dtypes should be converted to StringDtype().convert_integerbool, default True
Whether, if possible, conversion can be done to integer extension types.convert_booleanbool, defaults True
Whether object dtypes should be converted to BooleanDtypes().convert_floatingbool, defaults True
Whether, if possible, conversion can be done to floating extension types. If convert_integer is also True, preference will be give to integer dtypes if the floats can be faithfully casted to integers.dtype_backend{‘numpy_nullable’, ‘pyarrow’}, default ‘numpy_nullable’
Back-end data type applied to the resultant DataFrame (still experimental). Behaviour is as follows:"numpy_nullable": returns nullable-dtype-backed DataFrame (default)."pyarrow": returns pyarrow-backed nullable ArrowDtype DataFrame.New in version 2.0.Returns:
Series or DataFrame
Copy of input object with new dtype.
420-2、参数

420-2-1、infer_objects(可选,默认值为True)布尔值,指示是否对object类型列进行类型推断,如果为True,则会尝试将那些可以转换为其他类型的对象列转换为更具体的数据类型。

420-2-2、convert_string(可选,默认值为True)布尔值,指示是否将具有字符串数据的列转换为StringDtype,如果为True,将会把包含字符串的object列转换为更具表现力的字符串类型。

420-2-3、convert_integer(可选,默认值为True)布尔值,指示是否将能够转换为整数的列转换为相应的整数类型,通过此设置,可以将数据中的整数以更合适的格式进行保存。

420-2-4、convert_boolean(可选,默认值为True)布尔值,指示是否将布尔列转换为BooleanDtype,如果为True,布尔值将被转换为支持缺失值的布尔类型。

420-2-5、convert_floating(可选,默认值为True)布尔值,指示是否将能够转换为浮动数据的列转换为适当的浮点类型,如果为True,浮点数将被转换为支持缺失值的浮点类型。

420-2-6、dtype_backend(可选,默认值为'numpy_nullable')字符串,指定使用的数据类型后端,可以选择'numpy_nullable'或'pyarrow',这决定了在转换数据时底层使用的类型支持。

420-3、功能

        用于自动推断并转换DataFrame中的列数据类型,以便于后续的数据处理和分析,此方法旨在提供更灵活的类型支持,尤其在处理缺失值和兼容性方面。

420-4、返回值

        返回一个新的DataFrame,其中的数据类型被转换为更适合的类型,如果DataFrame中的列可以被转换为更具体的类型,则会在返回的DataFrame中体现出来。

420-5、说明

        无

420-6、用法
420-6-1、数据准备
420-6-2、代码示例
# 420、pandas.DataFrame.convert_dtypes方法
import pandas as pd
import numpy as np
# 创建一个DataFrame
df = pd.DataFrame({'A': ['1', '2', '3', None],           # 包含缺失值'B': [4.0, 5.1, 6.2, np.nan],          # 包含缺失值'C': [True, False, None, True]         # 布尔列,包含缺失值
})
# 查看原始数据类型
print(df.dtypes)
# 转换数据类型
df_converted = df.convert_dtypes()
# 查看转换后的数据类型
print(df_converted.dtypes)
# 打印转换后的数据
print(df_converted)
420-6-3、结果输出
# 420、pandas.DataFrame.convert_dtypes方法
# A     object
# B    float64
# C     object
# dtype: object
# A    string[python]
# B           Float64
# C           boolean
# dtype: object
#       A     B      C
# 0     1   4.0   True
# 1     2   5.1  False
# 2     3   6.2   <NA>
# 3  <NA>  <NA>   True

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/408699.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

FTP协议-匿名用户登录 从0到1

前言 日常大家可能接触web漏洞比较多而对其他端口及协议不那么了解&#xff0c;其实其他协议漏洞在渗透中也同样重要只是平时可能接触得不多。本文将介绍FTP协议、FTP匿名用户登录及其具体流程分析和自动化利用demo。 FTP简介 FTP是File Transfer Protocol&#xff08;文件传…

google浏览器chrome用户数据(拓展程序,书签等)丢失问题

一、问题背景 我出现这个情况的问题背景是&#xff1a;因为C盘块满了想清理一部分空间&#xff08;具体看这&#xff1a;windows -- C盘清理_c盘softwaredistribution-CSDN博客&#xff09;&#xff0c;于是找到了更改AppDatta这个方法&#xff0c;但因为&#xff0c;当时做迁移…

opencv-python图像增强十五:高级滤镜实现

文章目录 前言二、鲜食滤镜三、巧克力滤镜三&#xff0c;冷艳滤镜&#xff1a; 前言 在之前两个滤镜文章中介绍了六种简单的滤镜实现&#xff0c;它们大多都是由一个单独函数实现的接下来介绍五种结合了之前图像增强文章提的的算法的复合滤镜。本案例中的算法来自于文章一&…

qt-PLC可视化编辑器

qt-PLC可视化编辑器 一、演示效果二、核心代码三、下载链接 一、演示效果 二、核心代码 #include "diagramitem.h" #include "arrow.h"#include <QDebug> #include <QGraphicsScene> #include <QGraphicsSceneContextMenuEvent> #includ…

[000-01-018].第3节:Linux环境下ElasticSearch环境搭建

我的后端学习笔记大纲 我的ElasticSearch学习大纲 1.Linux系统搭建ES环境&#xff1a; 1.1.单机版&#xff1a; a.安装ES-7.8版本 1.下载ES: 2.上传与解压&#xff1a;将下载的tar包上传到服务器software目录下&#xff0c;然后解压缩&#xff1a;tar -zxvf elasticsearch-7…

人工智能算法工程师(中级)课程21-深度学习中各种优化器算法的应用与实践、代码详解

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能算法工程师(中级)课程21-深度学习中各种优化器算法的应用与实践、代码详解。本文将介绍PyTorch框架下的几种优化器&#xff0c;展示如何使用PyTorch中的优化器&#xff0c;我们将使用MNIST数据集和一个简单…

增材制造(3D打印):为何备受制造业瞩目?

在科技浪潮的推动下&#xff0c;增材制造——即3D打印技术&#xff0c;正逐步成为制造业领域的璀璨新星&#xff0c;吸引了航空航天、汽车、家电、电子等众多行业的目光。那么&#xff0c;是什么让3D打印技术如此引人注目并广泛应用于制造领域&#xff1f;其背后的核心优势又是…

Unity-可分组折叠的Editor

Unity-可分组折叠的Editor &#x1f957;功能介绍&#x1f36d;用法 &#x1f957;功能介绍 在序列化的字段上标记特性:[FoldoutGroup(“xxx”)]&#xff0c;inspector上就会被分组折叠显示。 &#xff08;没有被指定的字段自动放到Default组中&#xff09; 传送门&#x1f30…

【Python】1.基础语法(1)

文章目录 1.变量的语法1.1定义变量1.1.1硬性规则(务必遵守)1.1.2软性规则&#xff08;建议遵守&#xff09; 1.2使用变量 2.变量的类型2.1整型2.2浮点型2.3 字符串类型2.4布尔类型2.5其他类型2.6 动态类型特性 3.注释3.1 注释行3.2 文档字符串 3.3 如何批量注释3.4注释的规范 4…

深信服上半年亏损5.92亿,营收同比降低2.3亿

吉祥知识星球http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247485367&idx1&sn837891059c360ad60db7e9ac980a3321&chksmc0e47eebf793f7fdb8fcd7eed8ce29160cf79ba303b59858ba3a6660c6dac536774afb2a6330#rd 《网安面试指南》http://mp.weixin.qq.com/s?…

如何使用ssm实现网络安全宣传网站设计

TOC ssm177网络安全宣传网站设计jsp 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大&#xff0c;随着当前时代的信息化&#xff0c;科学化发展&#xff0c;让社会各行业领域都争相使用新的信息技术&#xff0c;对行业内的各种相关数据进行科学化&#xff0c;规范化管…

【SQL】指定日期的产品价格

目录 题目 分析 代码 题目 产品数据表: Products ------------------------ | Column Name | Type | ------------------------ | product_id | int | | new_price | int | | change_date | date | ------------------------ (product_id, chang…

九、前端中的异步方法Promise,Promise详解

文章目录 1.Promise简介什么是promise为什么使用Promisepromise中的状态 2.Promis的用法 1.Promise简介 什么是promise Promise是异步编程的一种解决方案&#xff0c;它的构造函数是同步执行的&#xff0c;then 方法是异步执行的。 为什么使用Promise 在JavaScript的世界中…

Java 入门指南:List 接口

Collection 接口提供了一系列用于操作和管理集合的方法&#xff0c;包括添加、删除、查询、遍历等。它是所有集合类的根接口&#xff0c;包括 List、Set、Queue 等。 Collection 接口常见方法 add(E element)&#xff1a;向集合中添加元素。 addAll(Collection col)&#xff1…

洛谷 P2569 [SCOI2010] 股票交易

题目来源于&#xff1a;洛谷 题目本质&#xff1a;动态规划&#xff0c;单调队列 解题思路&#xff1a; 方程f[i][j]表示第 i 天结束后&#xff0c;手里剩下 j 股的最大利润&#xff0c;则不买不卖&#xff1a;f[i][j]f[i-1][j]。 买入&#xff1a;f[i][j]max{f[i-w-1][k]k*…

vue3+ts+Go使用百度地图路书实现历史轨迹回放、轨迹回放进度、聚合点、自定义弹框和实时监控视频、多路视频轮巡播放

前言 分享一个刚做完项目集成技术&#xff0c;一个车辆行驶轨迹监控、行车视频监控、对特种车辆安全监管平台&#xff0c;今年政府单位有很多监管平台项目&#xff0c;例如&#xff1a;渣土车监控、租出车监管、危害气体运输车监管等平台&#xff0c;这些平台都有车辆行驶轨迹…

uniapp实现区域滚动、下拉刷新、上滑滚动加载更多

背景&#xff1a; 在uniapp框架中&#xff0c;有两种实现办法。第1种&#xff0c;是首先在page.json中配置页面&#xff0c;然后使用页面的生命周期函数&#xff1b;第2种&#xff0c;使用<scroll-view>组件&#xff0c;然后配置组件的相关参数&#xff0c;包括但不限于&…

Spring(一篇就懂)

Spring框架简介 Spring 是一个开源的Java企业级应用开发框架。 特点&#xff1a; 控制反转&#xff08;IoC&#xff09;&#xff1a;通过依赖注入&#xff08;DI&#xff09;减少组件间的耦合&#xff0c;由Spring容器负责对象的创建和绑定。 面向切面编程&#xff08;AOP&am…

企业高性能web服务器(nginx)

目录 Web服务器基础介绍 正常情况下的单次web服务器访问流程 Apache 经典的 Web服务端 Apache prefork 模型 Apache work模型 Apache event模型 服务端的I/O流程 服务器的I/O 磁盘I/O 网络I/O 网络I/O处理过程 I/O模型 I/O模型相关概念 同步/异步 阻塞/非阻塞 网…

面向对象06:super关键字详解

本节内容视频链接&#xff1a;面向对象10&#xff1a;Super详解_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV12J41137hu?p69&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 Java中的‌super关键字是一个特殊的引用&#xff0c;‌用于指代父类对象‌。‌在子…