2.数列极限
2.4 收敛准则
上节课举了一个例子 a N = 1 + 1 2 p + 1 3 p + . . . + 1 n p a_{N}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+...+\frac{1}{n^{p}} aN=1+2p1+3p1+...+np1
- p > 1 p>1 p>1, { a n } \{a_{n}\} {an}收敛
- 0 < p ≤ 1 0<p\le 1 0<p≤1, { a n } \{a_{n}\} {an}发散
特别地 p = 1 , a n = 1 + 1 2 + 1 3 + . . . + 1 n p=1,a_{n}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n} p=1,an=1+21+31+...+n1是正无穷大量
【例2.4.8】 b n = ( 1 + 1 2 + 1 3 + . . . + 1 n ) − ln n b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n bn=(1+21+31+...+n1)−lnn,证明 { b n } \{b_{n}\} {bn}收敛。
【证】 ( 1 + 1 n ) n < e < ( 1 + 1 n ) n + 1 (1+\frac{1}{n})^{n}<e<(1+\frac{1}{n})^{n+1} (1+n1)n<e<(1+n1)n+1(上节课推过的, e e e分别是左边的上确界和右边的下确界)
右侧不等式取对数得 1 < ( n + 1 ) ln 1 + n n 1<(n+1)\ln\frac{1+n}{n} 1<(n+1)lnn1+n
即 1 n + 1 < ln 1 + n n \frac{1}{n+1}<\ln\frac{1+n}{n} n+11<lnn1+n
左侧不等式取对数得 n ln 1 + n n < 1 n\ln\frac{1+n}{n}<1 nlnn1+n<1
即 ln 1 + n n < 1 n \ln\frac{1+n}{n}<\frac{1}{n} lnn1+n<n1
所以 1 n + 1 < ln 1 + n n < 1 n \frac{1}{n+1}<\ln\frac{1+n}{n}<\frac{1}{n} n+11<lnn1+n<n1
b n + 1 − b n = 1 n + 1 − ln ( n + 1 ) + ln n = 1 n + 1 − ln n + 1 n < 0 b_{n+1}-b_{n}=\frac{1}{n+1}-\ln(n+1)+\ln n=\frac{1}{n+1}-\ln\frac{n+1}{n}<0 bn+1−bn=n+11−ln(n+1)+lnn=n+11−lnnn+1<0
则 { b n } \{b_{n}\} {bn}是严格单调减少数列
b n = ( 1 + 1 2 + 1 3 + . . . + 1 n ) − ln n > ln 1 + 1 1 + ln 2 + 1 2 + . . . + n + 1 n − ln n = ln 2 + ln 3 − ln 2 + . . . + ln ( n + 1 ) − ln n − ln n = ln ( n + 1 ) − ln n = ln n + 1 n > 1 n + 1 > 0 b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n>\ln\frac{1+1}{1}+\ln\frac{2+1}{2}+...+\frac{n+1}{n}-\ln n=\ln 2+\ln 3- \ln2+...+\ln(n+1)- \ln n- \ln n=\ln(n+1)-\ln n=\ln\frac{n+1}{n}>\frac{1}{n+1}>0 bn=(1+21+31+...+n1)−lnn>ln11+1+ln22+1+...+nn+1−lnn=ln2+ln3−ln2+...+ln(n+1)−lnn−lnn=ln(n+1)−lnn=lnnn+1>n+11>0
所以 { b n } \{b_{n}\} {bn}严格单调减少有下界
由单调有界定理,所以 { b n } \{b_{n}\} {bn}收敛。
记 lim n → ∞ b n = γ \lim\limits_{n\to\infty}b_{n}=\gamma n→∞limbn=γ,称为Euler(欧拉)常数
γ ≈ 0.577215... \gamma\approx0.577215... γ≈0.577215...
【注】这两个无穷大量相差一个欧拉常数。
【例2.4.9】证明 lim n → ∞ ( 1 n + 1 + 1 n + 2 + . . . n n + n ) = ln 2 \lim\limits_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})=\ln 2 n→∞lim(n+11+n+21+...n+nn)=ln2
【证】 b n = ( 1 + 1 2 + 1 3 + . . . + 1 n ) − ln n , lim n → ∞ b n = γ b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n,\lim\limits_{n\to\infty}b_{n}=\gamma bn=(1+21+31+...+n1)−lnn,n→∞limbn=γ
b 2 n = ( 1 + 1 2 + 1 3 + . . . + 1 2 n ) − ln 2 n = ( 1 + 1 2 + 1 3 + . . . + 1 n + n ) − ln 2 n b_{2n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n})-\ln 2n=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+n})-\ln 2n b2n=(1+21+31+...+2n1)−ln2n=(1+21+31+...+n+n1)−ln2n
b 2 n − b n = ( 1 n + 1 + 1 n + 2 + . . . n n + n ) + ln n − ln 2 n = ( 1 n + 1 + 1 n + 2 + . . . n n + n ) + ln n 2 n = ( 1 n + 1 + 1 n + 2 + . . . n n + n ) − ln 2 b_{2n}-b_{n}=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})+\ln n-\ln 2n=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n})+\ln \frac{n}{2n}=(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) -\ln 2 b2n−bn=(n+11+n+21+...n+nn)+lnn−ln2n=(n+11+n+21+...n+nn)+ln2nn=(n+11+n+21+...n+nn)−ln2
由于 lim n → ∞ ( b 2 n − b n ) = 0 \lim\limits_{n\to\infty}(b_{2n}-b_{n})=0 n→∞lim(b2n−bn)=0
所以 lim n → ∞ ( ( 1 n + 1 + 1 n + 2 + . . . n n + n ) − ln 2 ) = 0 \lim\limits_{n\to\infty}((\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) -\ln 2)=0 n→∞lim((n+11+n+21+...n+nn)−ln2)=0
所以 lim n → ∞ ( 1 n + 1 + 1 n + 2 + . . . n n + n ) = ln 2 \lim\limits_{n\to\infty}(\frac{1}{n+1}+\frac{1}{n+2}+...\frac{n}{n+n}) =\ln 2 n→∞lim(n+11+n+21+...n+nn)=ln2
【例2.4.10】 d n = 1 − 1 2 + 1 3 − 1 4 + . . . + ( − 1 ) n + 1 1 n d_{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+(-1)^{n+1}\frac{1}{n} dn=1−21+31−41+...+(−1)n+1n1,说明 { d n } \{d_{n}\} {dn}是否收敛,若收敛,收敛于什么?
【解】 b n = ( 1 + 1 2 + 1 3 + . . . + 1 n ) − ln n , lim n → ∞ b n = γ b_{n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-\ln n,\lim\limits_{n\to\infty}b_{n}=\gamma bn=(1+21+31+...+n1)−lnn,n→∞limbn=γ
b 2 n = ( 1 + 1 2 + 1 3 + . . . + 1 2 n ) − ln 2 n = ( 1 + 1 2 + 1 3 + . . . + 1 n + n ) − ln 2 n , lim n → ∞ b 2 n = γ b_{2n}=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n})-\ln 2n=(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n+n})-\ln 2n,\lim\limits_{n\to\infty}b_{2n}=\gamma b2n=(1+21+31+...+2n1)−ln2n=(1+21+31+...+n+n1)−ln2n,n→∞limb2n=γ
用 b 2 n b_{2n} b2n中的第 2 k 2k 2k项与 b n b_{n} bn中的第 k k k项相减
b 2 n − b n = ( 1 − 1 2 + 1 3 − 1 4 − 1 6 + . . . + 1 2 n − 1 − 1 2 n ) − ln 2 = d 2 n − ln 2 b_{2n}-b_{n}=(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2n-1}-\frac{1}{2n})-\ln 2=d_{2n}-\ln 2 b2n−bn=(1−21+31−41−61+...+2n−11−2n1)−ln2=d2n−ln2
由于 lim n → ∞ ( b 2 n − b n ) = 0 \lim\limits_{n\to\infty}(b_{2n}-b_{n})=0 n→∞lim(b2n−bn)=0
所以 lim n → ∞ ( d 2 n − ln 2 ) = 0 \lim\limits_{n\to\infty}(d_{2n}-\ln 2)=0 n→∞lim(d2n−ln2)=0
即 lim n → ∞ d 2 n = ln 2 \lim\limits_{n\to\infty}d_{2n}=\ln 2 n→∞limd2n=ln2
d 2 n + 1 = d 2 n + ( − 1 ) 2 n + 1 + 1 1 2 n + 1 = d 2 n + 1 2 n + 1 d_{2n+1}=d_{2n}+(-1)^{2n+1+1}\frac{1}{2n+1}=d_{2n}+\frac{1}{2n+1} d2n+1=d2n+(−1)2n+1+12n+11=d2n+2n+11
所以 lim n → ∞ d 2 n + 1 = lim n → ∞ ( d 2 n + 1 2 n + 1 ) = ln 2 \lim\limits_{n\to\infty}d_{2n+1}=\lim\limits_{n\to\infty}(d_{2n}+\frac{1}{2n+1})=\ln 2 n→∞limd2n+1=n→∞lim(d2n+2n+11)=ln2
所以 lim n → ∞ d n = ln 2 \lim\limits_{n\to\infty}d_{n}=\ln 2 n→∞limdn=ln2(偶数子列和奇数子列收敛于同一个数,则原数列是收敛于这个数)
2.4.4 闭区间套定理
【定义2.4.1】闭区间套是指一列闭区间 { [ a n , b n ] } \{[a_{n},b_{n}]\} {[an,bn]}满足:
(1) [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] , n = 1 , 2 , 3 , . . . [a_{n+1},b_{n+1}]\subset[a_{n},b_{n}],n=1,2,3,... [an+1,bn+1]⊂[an,bn],n=1,2,3,...
(2) b n − a n → 0 ( n → ∞ ) b_{n}-a_{n}\to 0(n\to\infty) bn−an→0(n→∞)(区间长度趋于0)
则称这样一列闭区间 { [ a n , b n } \{[a_{n},b_{n}\} {[an,bn}是一个闭区间套。
【定理2.4.2】【闭区间套定理】若 { [ a n , b n } \{[a_{n},b_{n}\} {[an,bn}是一个闭区间套,则存在唯一的实数 ξ \xi ξ属于一切闭区间 [ a n , b n ] [a_{n},b_{n}] [an,bn],且 ξ = lim n → ∞ a n = lim n → ∞ b n \xi=\lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n} ξ=n→∞liman=n→∞limbn
【证】 a 1 ≤ a n − 1 ≤ a n < b n ≤ b n − 1 ≤ b 1 a_{1}\le a_{n-1}\le a_{n}<b_{n}\le b_{n-1}\le b_{1} a1≤an−1≤an<bn≤bn−1≤b1(区间是一个套一个的)
所以 { a n } \{a_{n}\} {an}单调增加,且有上界 b 1 b_{1} b1, { b n } \{b_{n}\} {bn}单调减少,且有下界 a 1 a_{1} a1,由单调有界定理, { a n } \{a_{n}\} {an}与 { b n } \{b_{n}\} {bn}均收敛
设 lim n → ∞ a n = ξ , lim n → ∞ b n = lim n → ∞ [ a n + ( b n − a n ) ] \lim\limits_{n\to\infty}a_{n}=\xi,\lim\limits_{n\to\infty}b_{n}=\lim\limits_{n\to\infty}[a_{n}+(b_{n}-a_{n})] n→∞liman=ξ,n→∞limbn=n→∞lim[an+(bn−an)]
根据闭区间套的定义 lim n → ∞ ( b n − a n ) = 0 \lim\limits_{n\to\infty}(b_{n}-a_{n})=0 n→∞lim(bn−an)=0
所以 lim n → ∞ b n = lim n → ∞ [ a n + ( b n − a n ) ] = lim n → ∞ a n = ξ \lim\limits_{n\to\infty}b_{n}=\lim\limits_{n\to\infty}[a_{n}+(b_{n}-a_{n})]=\lim\limits_{n\to\infty}a_{n}=\xi n→∞limbn=n→∞lim[an+(bn−an)]=n→∞liman=ξ
所以 ξ \xi ξ是 { x n } \{x_{n}\} {xn}的上确界,是 { b n } \{b_{n}\} {bn}的下确界
a n ≤ ξ ≤ b n a_{n}\le \xi \le b_{n} an≤ξ≤bn,即 ξ \xi ξ属于一切闭区间 [ a n , b n ] [a_{n},b_{n}] [an,bn]
若 ξ ′ ∈ [ a n , b n ] , n = 1 , 2 , 3 , . . . \xi '\in[a_{n},b_{n}],n=1,2,3,... ξ′∈[an,bn],n=1,2,3,...
由 a n ≤ ξ ′ ≤ b n a_{n}\le \xi ' \le b_{n} an≤ξ′≤bn
由于 lim n → ∞ a n = lim n → ∞ b n = ξ \lim\limits_{n\to\infty}a_{n}=\lim\limits_{n\to\infty}b_{n}=\xi n→∞liman=n→∞limbn=ξ
由数列极限的夹逼性定理可知
ξ ′ = ξ \xi ' =\xi ξ′=ξ,所以 ξ \xi ξ唯一
证毕
【定理2.4.3】实数集 R \mathbb{R} R不可列。
【证】用反证法,假设实数集 R \mathbb{R} R可列,即可以找到一种排列的规则使得 R = { x 1 , x 2 , x 3 , . . . , x n , . . . } \mathbb{R}=\{x_{1},x_{2},x_{3},...,x_{n},...\} R={x1,x2,x3,...,xn,...}
取 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1]使得 x 1 ∉ [ a 1 , b 1 ] x_{1}\notin[a_{1},b_{1}] x1∈/[a1,b1],将 [ a 1 , b 1 ] [a_{1},b_{1}] [a1,b1]分成 [ a 1 , 2 a 1 + b 1 3 ] , [ 2 a 1 + b 1 3 , a 1 + 2 b 1 3 ] , [ a 1 + 2 b 1 3 , b 1 ] [a_{1},\frac{2a_{1}+b_{1}}{3}],[\frac{2a_{1}+b_{1}}{3},\frac{a_{1}+2b_{1}}{3}],[\frac{a_{1}+2b_{1}}{3},b_{1}] [a1,32a1+b1],[32a1+b1,3a1+2b1],[3a1+2b1,b1],其中必有一个区间都包含 x 2 x_{2} x2,取它为 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2], x 2 ∉ [ a 2 , b 2 ] x_{2}\notin[a_{2},b_{2}] x2∈/[a2,b2],将 [ a 2 , b 2 ] [a_{2},b_{2}] [a2,b2]分成三分 [ a 2 , 2 a 2 + b 2 3 ] , [ 2 a 2 + b 2 3 , a 2 + 2 b 2 3 ] , [ a 2 + 2 b 2 3 , b 2 ] [a_{2},\frac{2a_{2}+b_{2}}{3}],[\frac{2a_{2}+b_{2}}{3},\frac{a_{2}+2b_{2}}{3}],[\frac{a_{2}+2b_{2}}{3},b_{2}] [a2,32a2+b2],[32a2+b2,3a2+2b2],[3a2+2b2,b2],其中必有一个区间不包含 x 3 x_{3} x3,取它为 [ a 3 , b 3 ] [a_{3},b_{3}] [a3,b3], x 3 ∉ [ a 3 , b 3 ] x_{3}\notin[a_{3},b_{3}] x3∈/[a3,b3]
将此过程一直做下去,得到一个闭区间套 { [ a n , b n ] } \{[a_{n},b_{n}]\} {[an,bn]},满足 x n ∉ [ a n , b n ] x_{n}\notin[a_{n},b_{n}] xn∈/[an,bn],由闭区间套定理,必存在 ξ \xi ξ属于一切 [ a n , b n ] [a_{n},b_{n}] [an,bn],于是 ∀ n , ξ ≠ x n , n = 1 , 2 , 3 , . . . \forall n,\xi\ne x_{n},n=1,2,3,... ∀n,ξ=xn,n=1,2,3,...
这与假设矛盾
所以实数集 R \mathbb{R} R不可列。
【注】分成三分是为了用闭区间,如果分成两份,那么闭区间会有重合点,如果那个数刚好是重合点,那么就不存在一个不包含 x n x_{n} xn的区间,后面会有问题。