【数学建模学习手册】python基本入门使用

本专栏内容为:数学建模原理 记录学习数学建模

💓博主csdn个人主页:小小unicorn
⏩专栏分类:数学建模
🚚代码仓库:小小unicorn的代码仓库🚚
🌹🌹🌹关注我带你学习编程知识

目录

  • numpy库
    • 导入
    • 数组创建
      • 示例1:
      • 示例2:
    • 数组元素索引:
      • 示例:
    • 矩阵运算与线性代数
    • 求解线性方程组的唯一解
      • 例1:求解线性方程组:
    • 求超定方程组的最小二乘解
      • 例2:求解线性方程组:
        • 第一种:
        • 第二种:
        • 两种方法的比较:
      • 什么是超定方程?
    • 求矩阵的特征值特征向量:
  • Pandas库
    • 生成二维数组:
    • 读写文件
    • 数据预处理:
  • SciPy库
    • 求解非线性方程组
    • 积分:
    • 最小二乘解
    • 求矩阵最大模特征值与特征向量
  • SymPy库
    • 例1:求符号解
    • 例2:求符号解
    • 例3:求矩阵的特征值与特征向量(符号解)
  • Matplotlib库
    • 子图:
    • 三维绘图
      • 例1:三维曲线

numpy库

导入

import numpy as 

数组创建

在这里插入图片描述

示例1:

import numpy as np
a1 = np.array([1, 2, 3, 4])   #生成整型数组
a2 = a1.astype(float)
a3 = np.array([1, 2, 3, 4], dtype=float)   #浮点数
print(a1.dtype); print(a2.dtype); print(a3.dtype)
b = np.array([[1, 2, 3], [4, 5, 6]])
c = np.arange(1,5)        #生成数组[1, 2, 3, 4]
d = np.linspace(1, 4, 4)  #生成数组[1, 2, 3, 4]
e = np.logspace(1, 3, 3, base=2)  #生成数组[2, 4, 8]
print(b)
print(c)
print(d)
print(e)

示例2:

import numpy as np
a = np.ones(4, dtype=int)     #输出[1, 1, 1, 1]
b = np.ones((4,), dtype=int)  #同a
c= np.ones((4,1))             #输出4行1列的数组
d = np.zeros(4)               #输出[0, 0, 0, 0]
e = np.empty(3)               #生成3个元素的空数组行向量
f = np.eye(3)                 #生成3阶单位阵
g = np.eye(3, k=1)  #生成第k对角线的元素为1,其他元素为0的3阶方阵
h = np.zeros_like(a)          #生成与a同维数的全0数组

数组元素索引:

在这里插入图片描述

示例:

import numpy as np
a = np.arange(16).reshape(4,4)  #生成4行4列的数组
b = a[1][2]   #输出6
c = a[1, 2]   #同b
d = a[1:2, 2:3]  #输出[[6]]
x = np.array([0, 1, 2, 1])
print(a[x==1])  #输出a的第2、4行元素

在这里插入图片描述

矩阵运算与线性代数

线性代数只要使用numpy.linalg模块,其常用函数如下:
在这里插入图片描述

求解线性方程组的唯一解

例1:求解线性方程组:

在这里插入图片描述
代码:

import numpy as np
a = np.array([[3, 1], [1, 2]])
b = np.array([9, 8])
x1 = np.linalg.inv(a) @ b  #第一种解法
#上面语句中@表示矩阵乘法
x2 = np.linalg.solve(a, b) #第二种解法
print(x1); print(x2)

结果:
在这里插入图片描述

求超定方程组的最小二乘解

例2:求解线性方程组:

在这里插入图片描述
代码:

第一种:
import numpy as np
a = np.array([[3, 1], [1, 2], [1, 1]])
b = np.array([9, 8, 6])
#a*b
x = np.linalg.pinv(a) @ b  
print("求得的最小二乘解为:")
print(np.round(x, 4))
第二种:

使用 lstsq 求解最小二乘问题:

  • a: 系数矩阵。
  • b: 右侧的结果向量。
  • rcond: 用来裁剪奇异值的一个参数(可以先设置为 None,默认行为会使用合理的值)

lstsq 函数返回四个值:

  • x: 最小二乘解,即满足 a @ x ≈ b 的解。
  • residuals: 残差的平方和。如果方程是过定的(更多的方程比未知数多),这个值才有意义。
  • rank: 矩阵 a 的秩。
  • s: a 的奇异值。
import numpy as np
a = np.array([[3, 1], [1, 2], [1, 1]])
b = np.array([9, 8, 6])
x, residuals, rank, s = np.linalg.lstsq(a, b, rcond=None)
print("求得的最小二乘解为:")
#round对数组中的每个元素进行四舍五入。4就是保留四位
print(np.round(x, 4))
两种方法的比较:
  • pinv 方法:先通过 np.linalg.pinv(a) 求解 a 的伪逆矩阵,再用矩阵乘法 @ 乘以向量 b 来得到最小二乘解。适合直接计算伪逆矩阵的场合。

  • lstsq 方法:直接求解最小二乘解,它比伪逆法更高效,因为它不需要显式计算伪逆矩阵,并且提供了残差、矩阵秩等额外信息。

  • 在数值精度和计算效率上,lstsq 通常表现得更好,尤其是当矩阵 a 较大时

结果:
在这里插入图片描述

什么是超定方程?

超定线性方程组(overdetermined system of linear equations)指的是方程的数量多于未知数的线性方程组。这意味着方程的数量 mmm 大于未知数的数量 nnn(即 m>nm > nm>n)。

特点:

  • 方程数量多于未知数:这类方程组往往没有精确的解,因为过多的方程对未知数施加了更多的约束条件,这些条件可能互相矛盾,无法同时满足。
  • 无法精确求解:由于不可能满足所有方程,通常需要使用最小二乘法等数值方法来找到使方程“近似成立”的解。这种解不是精确解,而是尽可能让方程残差(误差)最小的解。

例子:
在这里插入图片描述
在这里插入图片描述

求矩阵的特征值特征向量:

例1:
在这里插入图片描述
代码:

import numpy as np#它创建一个 4x4 的单位矩阵
#单位矩阵的定义是:对角线上(从左上到右下)所有元素为 1,其余元素为 0。
a = np.eye(4)
# a = [[1. 0. 0. 0.]
#      [0. 1. 0. 0.]
#      [0. 0. 1. 0.]
#      [0. 0. 0. 1.]]#将矩阵逆时针旋转 90 度
b = np.rot90(a)
# b = [[0. 0. 0. 1.]
#      [0. 0. 1. 0.]
#      [0. 1. 0. 0.]
#      [1. 0. 0. 0.]]#如果想顺时针旋转90度,加上一个参数k=-1;
# b=np.rot90(a,-1)
# b = [[0. 0. 0. 1.]
#      [0. 0. 1. 0.]
#      [0. 1. 0. 0.]
#      [1. 0. 0. 0.]]#顺时针旋转与逆时针旋转的关系:
#顺时针旋转 90 度相当于逆时针旋转 270 度。因此,你也可以通过 np.rot90(a, k=3) 达到相同的效果。
c, d = np.linalg.eig(b)
print('特征值为:', c)
print('特征向量为:\n', d)

结果:
在这里插入图片描述

Pandas库

在这里插入图片描述

生成二维数组:

例1:生成服从标准正态分布的24x4随机数矩阵,并保存为DataFrame数据结构

import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))# 数据写入文件实例
a1.to_excel('data2_4_1.xlsx')  # 保存到 Excel
a2.to_csv('data2_4_2.csv')     # 保存到 CSV
#不包含行索引时
a1.to_excel('data2_4_1.xlsx', index=False)  # 保存到 Excel,不包含行索引
a2.to_csv('data2_4_2.csv', index=False)     # 保存到 CSV,不包含行索引

读写文件

在这里插入图片描述
例2:写入文件

import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))# 数据写入文件实例
a1.to_excel('data2_4_1.xlsx')  # 保存到 Excel
a2.to_csv('data2_4_2.csv')     # 保存到 CSV
#不包含行索引时
a1.to_excel('data2_4_1.xlsx', index=False)  # 保存到 Excel,不包含行索引
a2.to_csv('data2_4_2.csv', index=False)     # 保存到 CSV,不包含行索引
# 使用 with 语句创建 ExcelWriter 对象
with pd.ExcelWriter('data2_4_3.xlsx') as writer:a1.to_excel(writer, sheet_name="Sheet1")  # 把a1写入Excel文件的Sheet1a2.to_excel(writer, sheet_name="Sheet2")  # 把a2写入另一个表单Sheet2
# 文件会自动保存和关闭,无需显式调用 save() 方法

结果:
在这里插入图片描述
在这里插入图片描述
如果写入数据时,不包含行索引:

import pandas as pd
import numpy as np# 创建数据
dates = pd.date_range(start='20191101', end='20191124', freq='D')
a1 = pd.DataFrame(np.random.randn(24, 4), index=dates, columns=list('ABCD'))
a2 = pd.DataFrame(np.random.rand(24, 4))#不包含行索引时
a1.to_excel('data2_4_4.xlsx', index=False)  # 保存到 Excel,不包含行索引   header=False  不包含列索引
a2.to_csv('data2_4_5.csv', index=False)     # 保存到 CSV,不包含行索引
# 使用 with 语句创建 ExcelWriter 对象
with pd.ExcelWriter('data2_4_6.xlsx') as writer:a1.to_excel(writer, sheet_name="Sheet1", index=False)  # 把a1写入Excel文件的Sheet1a2.to_excel(writer, sheet_name="Sheet2",index=False)  # 把a2写入另一个表单Sheet2

在这里插入图片描述
在这里插入图片描述

数据预处理:

在这里插入图片描述
例1:拆分,合并,分组计算

import pandas as pd
import numpy as np
d=pd.DataFrame(np.random.randint(1,6,(10,4)), columns=list("ABCD"))
d1=d[:4]  #获取前4行数据
d2=d[4:]  #获取第5行以后的数据
dd=pd.concat([d1,d2])   #数据行合并
s1=d.groupby('A').mean()      #数据分组求均值
s2=d.groupby('A').apply(sum)  #数据分组求和print(d,'\n')
print(d1,'\n')
print(d2,'\n')
print(dd,'\n')
print(s1,'\n')
print(s2,'\n')

结果:
在这里插入图片描述
在这里插入图片描述
例2:DataFrame数据操作示例
在这里插入图片描述

import pandas as pd
import numpy as np
a = pd.DataFrame(np.random.randint(1,6,(5,3)),index=['a', 'b', 'c', 'd', 'e'],columns=['one', 'two', 'three'])
a.loc['a', 'one'] = np.nan  #修改第1行第1列的数据
b = a.iloc[1:3, 0:2].values  #提取第2、3行,第1、2列数据
a['four'] = 'bar'  #增加第4列数据
a2 = a.reindex(['a', 'b', 'c', 'd', 'e', 'f'])
a3 = a2.dropna()   #删除有不确定值的行
print(a,'\n')
print(b,'\n')
print(a2,'\n')
print(a3,'\n')

在这里插入图片描述

SciPy库

模块功能表:
在这里插入图片描述

求解非线性方程组

求方程:
在这里插入图片描述
代码实现:

from scipy.optimize import fsolve, root
fx = lambda x:     x**980-5.01*x**979+7.398*x**978\-3.388*x**977-x**3+5.01*x**2-7.398*x+3.388
x1 = fsolve(fx, 1.5, maxfev=4000)  #函数调用4000次
x2 = root(fx, 1.5)
print(x1,'\n','-------------');print(x2)

在这里插入图片描述
注意:
在这里插入图片描述
例2:求下列方程组的一组数值解
在这里插入图片描述

from scipy.optimize import fsolve, root
fx = lambda x: [x[0]**2+x[1]**2-1, x[0]-x[1]]
#初始值为[1,1]
s1 = fsolve(fx, [1, 1])
s2 = root(fx, [1, 1])
print(s1,'\n','--------------'); print(s2)

在这里插入图片描述

积分:

例1:
在这里插入图片描述

from scipy.integrate import quad
def fun46(x, a, b):return a*x**2+b*x
I1 = quad(fun46, 0, 1, args=(2, 1))
I2 = quad(fun46, 0, 1, args=(2, 10))
print(I1); print(I2)

结果:
在这里插入图片描述
在这里插入图片描述

最小二乘解

在这里插入图片描述
例1:
在这里插入图片描述
在这里插入图片描述
代码:

from scipy.optimize import least_squares
import numpy as np
a=np.loadtxt('Z:\Code\python\建模培训2024\code\data2_47.txt')
x0=a[0]; y0=a[1]; d=a[2]
fx=lambda x: np.sqrt((x0-x[0])**2+(y0-x[1])**2)-d
s=least_squares(fx, np.random.rand(2))
print(s, '\n', '------------', '\n', s.x)

在这里插入图片描述

求矩阵最大模特征值与特征向量

在这里插入图片描述
代码:

from scipy.sparse.linalg import eigs
import numpy as npa = np.array([[1, 2, 3], [2, 1, 3], [3, 3, 6]], dtype=float)  #必须加float,否则出错
b, c = np.linalg.eig(a)
d, e = eigs(a, 1)
print('最大模特征值为:', d)
print('对应的特征向量为:\n', e)

在这里插入图片描述
在这里插入图片描述

SymPy库

定义符号变量或符号函数命令如下:
在这里插入图片描述

例1:求符号解

在这里插入图片描述

import sympy as sp
a, b, c, x=sp.symbols('a,b,c,x')
x0=sp.solve(a*x**2+b*x+c, x)
print(x0)

在这里插入图片描述

例2:求符号解

在这里插入图片描述
代码实现:

import sympy as sp
# sp.var('x1,x2')
# s=sp.solve([x1**2+x2**2-1,x1-x2],[x1,x2])
# print(s)
x1,x2=sp.symbols('x1,x2')
s=sp.solve([x1**2+x2**2-1,x1-x2],[x1,x2])
print(s)

在这里插入图片描述

例3:求矩阵的特征值与特征向量(符号解)

import numpy as np
import sympy as sp
a = np.identity(4)  #单位矩阵的另一种写法
b = np.rot90(a)
c = sp.Matrix(b)
print('特征值为:', c.eigenvals())
print('特征向量为:\n', c.eigenvects())

在这里插入图片描述

Matplotlib库

plot绘图常见的样式和颜色类型:
在这里插入图片描述
在这里插入图片描述
例1:
在这里插入图片描述代码:

import pandas as pd
import pylab as plt
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('font',size=16)  #设置显示字体大小
a=pd.read_excel("Z:\Code\python\建模培训2024\code\data2_52.xlsx", header=None)
b=a.values  #提取其中的数据
x=b[0]; y=b[1:]
#第三个参数。虚实线+形状+颜色
plt.plot(x,y[0],'-*b',label='钻石')
plt.plot(x,y[1],'--dr',label='铂金')
plt.xlabel('月份'); plt.ylabel('每月销量')
plt.legend(loc='upper left'); plt.grid(); plt.show()

在这里插入图片描述
例2:画出销售额的柱状图;

import pandas as pd
import pylab as plt
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('font',size=16)  #设置显示字体大小
a=pd.read_excel("Z:\Code\python\建模培训2024\code\data2_52.xlsx",header=None)
b=a.T
b.plot(kind='bar'); plt.legend(['钻石', '铂金'])
plt.xticks(range(6), b[0], rotation=0)
plt.ylabel('数量'); plt.show()

在这里插入图片描述

子图:

在这里插入图片描述
代码:

import pylab as plt
import numpy as np
plt.rc('font',family='SimHei')  #用来正常显示中文标签
plt.rc('axes',unicode_minus=False)
#生成随机数,进行归一化处理
y1=np.random.randint(2, 5, 6)
#使其和为1
y1=y1/sum(y1)
#创建第一个子图,水平条形图
# 在一个 2x2 的子图网格中创建第一个子图,位于第一个位置。
plt.subplot(2, 2, 1)
str=['苹果', '葡萄', '桃子', '梨', '香蕉', '菠萝']
plt.barh(str,y1)  #水平条形图
#创建第二个子图,饼图
plt.subplot(222)
plt.pie(y1, labels=str)  #饼图
#创建第三个子图,折线图
plt.subplot(212)
#生成一个包含 100 个点的数组,这些点均匀分布在 0.01 到 10 之间。
x2=np.linspace(0.01, 10, 100)
y2=np.sin(10*x2)/x2
plt.plot(x2,y2); plt.xlabel('$x$')
plt.ylabel('$\\mathrm{sin}(10x)/x$'); plt.show()

结果:
在这里插入图片描述

三维绘图

例1:三维曲线

在这里插入图片描述
代码:

import pylab as plt
import numpy as np
ax=plt.axes(projection='3d')  #设置三维图形模式
z=np.linspace(-50, 50, 1000)
x=z**2*np.sin(z); y=z**2*np.cos(z)
ax.plot(x, y, z, 'c')
plt.show()

在这里插入图片描述
例2:画出三维表面图:

import pylab as plt
import numpy as np
x=np.linspace(-4,4,100)
x,y=np.meshgrid(x,x)
z=50*np.sin(x+y)
ax=plt.axes(projection='3d')
ax.plot_surface(x, y, z, color='b')
plt.show()

在这里插入图片描述
例3:
在这里插入图片描述
代码:

import pylab as plt
import numpy as np
ax=plt.axes(projection='3d')
X = np.arange(-6, 6, 0.25)
Y = np.arange(-6, 6, 0.25)
X, Y = np.meshgrid(X, Y)
Z = np.sin(np.sqrt(X**2 + Y**2))
surf = ax.plot_surface(X, Y, Z, cmap='coolwarm')
#在图形旁边添加一个颜色条,用于表示不同颜色对应的 Z 值(即表面的高度)。
plt.colorbar(surf); plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/412412.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Cycle inside Runner; building could produce unreliable results.

报错 Showing Recent Messages Cycle inside Runner; building could produce unreliable results. Cycle details: → Target Runner ○ That command depends on command in Target Runner: script phase “Thin Binary” ○ Target Runner has process command with outpu…

Oracle taf高级特性使用

0、taf介绍 TAF是Oracle数据库提供的一个高级特性,旨在实现应用程序在数据库连接中断时的透明重连。它允许应用程序在数据库故障发生时,无需修改代码或手动干预,就能自动连接到新的数据库实例,保证了事务的连续性和应用的高可用性…

Python编码—掌握Python与Kubernetes:构建高效微服务架构

🌟🌟 欢迎来到我的技术小筑,一个专为技术探索者打造的交流空间。在这里,我们不仅分享代码的智慧,还探讨技术的深度与广度。无论您是资深开发者还是技术新手,这里都有一片属于您的天空。让我们在知识的海洋中…

开源搜索引擎之Solr

Apache Solr 是一个开源的企业级搜索平台,构建在 Apache Lucene 之上,提供了强大的全文搜索、实时索引和分布式搜索能力。Solr 被广泛用于构建高性能的搜索应用程序,支持从简单的搜索引擎到复杂的数据分析平台等多种场景。以下是对 Apache So…

Linux学习笔记(4)----Debian压力测试方法

使用命令行终端压力测试需要两个实用工具:s-tui和stress sudo apt install s-tui stress 安装完成后,在终端中启动 s-tui实用工具: s-tui 执行后如下图: 你可以使用鼠标或键盘箭头键浏览菜单,然后点击“压力选项(Str…

类在JVM中的工作原理

文章目录 引言I 类在JVM中的工作原理class文件的结构类的生命周期II JVM运行时数据区堆栈的意义栈帧内部结构堆III 在JIT中比较常见的优化手段引言 类是一种抽象概念,它是一种模板,用来定义一类事物的属性和行为。类是面向对象编程的基础,它是一种抽象的概念,代表一类事物…

科技赋能 重塑未来医疗丨共谋医疗信息化新方向,2024东北医院信息网络大会圆满落幕!

近年来,随着我国医疗行业信息化的飞跃式发展,医疗信息化已经成为推动医疗行业高质量发展的重要力量之一。自2021年国家卫健委、中医药管理局联合印发《公立医院高质量发展促进行动(2021-2025年)》以来,各医疗机构将建设…

Ant Design Vue中Modal.confirm无法自动关闭

温馨tips:着急看解决方法可跳过碎碎念~ 前两天经理扔给我一个问题:“这个弹窗怎么关不上了?” 我怀着无所谓的心态:小意思啦,5分钟之内解决完~ …当然flag是不能随便乱立的 拉下来项目(原神启动(不是&…

商家推广怎么利用C#发送视频短信

视频短信,这一融合了视频、音频与文本的创新通信方式,不仅革新了传统短信的单一形式,更以其独特的魅力带领着移动通信的新风尚。它以移动视频格式为载体,实现了信息传输的多元化,为用户带来不一样的通信体验。 支持免费…

layui栅格布局设置列间距不起作用

layui栅格布局支持设置列间距,只需使用预置类layui-col-space*即可。不过实际使用时却始终看不到效果。   根据layui官网文档的说明,只需要在行所在div元素的class属性中增加layui-col-space*即可出现列间距。如下图所示:   但是实际使用…

2024 年顶级 Flutter UI 框架和库

根据 2022 年 StackOverflow 调查显示,Flutter 是最受欢迎的跨平台工具之一。自发布以来的 16 个月内,已有超过 200 万开发者采用了 Flutter。在本博客中,我们将浏览 GitHub 上可用的顶级 Flutter 存储库。除了每个存储库之外,还提…

Navicat Lite导入为SQL,然后到服务器的SQLServer Management 里执行时,报各种错误,是文件的Encoding不一致导致的解决

1、好多时候,本地的操作系统与服务器的操作系统不一致,有的时候也是历史原因,我们不得不用老旧的版本的数据库,比如 SQLServer 2008R2的数据库系统。 2、然后本地因为操作系统是win11的,导致这个SQLServer 2008R2根本…

萤石云 C++ SDK使用指南

今天继续指南系列,给出了萤石云QtDemo配置使用以及sdk开发中常见问题的指南 SDK下载 一、demo使用配置 1、demo环境配置 Demo 所使用Qt SDK版本:Qt4.8.5 Demo两种开发模式: 下载Qt Creator for Windows,使用Qt Creator作为I…

USR-DR134有人网关如何对接到ThingsPanel

本指南将帮助您使用有人口红串口服务器USR-DR134/USR-DR132将断路器接入ThingsPanel平台。这款创新的超小体积导轨式单串口服务器能够实现RS485/RS232转以太网的双向透传功能,是连接断路器与物联网平台的理想选择。 设备介绍: 口红串口服务器USR-DR134…

解析 uni-app 小程序分包策略:合理优化包体积分布

引言 微信小程序的流行使得越来越多的开发者投入到小程序的开发中。但是,随着项目规模的增大,小程序的性能也会面临一些挑战。其中,小程序分包策略是提升性能的重要一环。 同时,uni-app 的流行也使众多的移动端开发者选择使用 u…

零基础入门转录组数据分析——单基因ROC分析

零基础入门转录组数据分析——单基因ROC分析 目录 零基础入门转录组数据分析——单基因ROC分析1. ROC分析的基础知识2. 单基因ROC分析(Rstudio)——代码实操2. 1 数据处理2. 2 单基因ROC分析2. 3 ROC曲线简单可视化 1. ROC分析的基础知识 1.1 ROC分析是…

如何在忘记密码或 ID 的情况下解锁 iPhone 15

您是否曾经因为忘记了 iPhone 密码而陷入困境,或者您是否多次错误地输入了屏幕时间密码并发现自己被锁定在 iPhone 之外? 被锁定和拒绝访问您的 iPhone 可能很常见,尤其是在您尚未配置 Face ID 的情况下。或者,如果 Face ID 无法正…

在head的style标签中直接添加css样式

<!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <meta name"viewport" content"widthdevice-width, initial-scale1.0"> <title>内嵌样式示例</title> &l…

无人机校企合作:组装、维修、研发全面提升学生技能方好就业

无人机校企合作在组装、维修、研发等方面全面提升学生技能&#xff0c;进而促进学生就业&#xff0c;是一个具有前瞻性和实践性的教育模式。以下是对该合作模式的详细分析&#xff1a; 一、合作背景与意义 随着无人机技术的快速发展和广泛应用&#xff0c;市场对无人机专业人…

用Python在PDF文档中创建动作

PDF格式因其跨平台兼容性和丰富的功能集而成为许多行业中的首选文件格式。其中&#xff0c;PDF中的动作&#xff08;Action&#xff09; 功能尤为突出&#xff0c;它允许开发者嵌入交互式元素&#xff0c;如链接、按钮或是更复杂的脚本&#xff0c;从而显著提升文档的互动性和功…