数据挖掘之分类算法

分类算法是数据挖掘中常用的一类算法,其主要任务是根据已知的训练数据(即带有标签的数据)构建模型,然后利用该模型对新的数据进行分类。分类算法广泛应用于金融、医疗、市场营销等领域,用于预测、决策支持等任务。以下是几种常见的分类算法:

 1. 决策树(Decision Tree)


   原理:通过树状结构将数据集划分成更小的子集,节点代表特征,分支代表决策规则,叶节点代表分类结果。
   优点:易于理解和解释,能够处理数值型和分类数据。
   缺点:容易产生过拟合,特别是在树非常深的情况下。

  • 结构:决策树由节点和边组成,包括根节点、内部节点和叶节点。
    • 根节点:代表整个数据集的起始点。
    • 内部节点:每个内部节点表示一个特征或属性的测试。
    • 叶节点:代表分类结果或预测值。
  • 决策树的构建过程

    • 特征选择:选择最能区分数据的特征作为分割依据。常用的选择标准包括信息增益、信息增益比、基尼指数等。
    • 分裂:根据选定的特征将数据集划分为若干子集。对于每个子集,继续选择最佳特征进行分裂,直到满足停止条件(如所有样本属于同一类,或没有更多特征可用)。
    • 停止条件:构建过程在达到某个条件时停止,比如树达到一定的深度、分裂后样本数过少或无法获得信息增益等。
    • 决策规则:每个节点通过对一个特征的测试将数据分配到不同的分支,直到到达叶节点为止。
  • 决策树算法的常见类型

    • ID3(Iterative Dichotomiser 3):使用信息增益作为分裂标准,倾向于选择具有较多类别的特征。
    • C4.5:改进了ID3算法,使用信息增益比来选择分裂特征,并支持处理连续属性和缺失值。
    • CART(Classification and Regression Trees):可用于分类和回归,使用基尼指数作为分裂标准,产生二叉树结构。

 2. 朴素贝叶斯(Naive Bayes)


   原理:基于贝叶斯定理,假设特征之间是独立的,计算每个类别的概率,选择概率最大的类别。
   优点:计算速度快,适合处理大规模数据集,对小数据集也有很好的表现。
   缺点:对特征独立性假设要求较高,当特征相关性较强时性能下降。

  • 贝叶斯定理:朴素贝叶斯算法基于贝叶斯定理进行分类预测。贝叶斯定理描述了事件发生的概率如何根据新的证据进行更新。公式如下:

    其中:

    • P(C∣X) 是在给定特征 X 时,类别 C 的后验概率。
    • P(X∣C) 是在类别 C 下特征 X 出现的似然度。
    • P(C) 是类别 C 的先验概率。
    • P(X) 是特征 X 的边际似然度。
  • 朴素独立假设:假设特征之间是相互独立的,即在计算 P(X∣C)时,特征 X 的联合概率可以拆分为各个特征的条件概率的乘积:

  朴素贝叶斯的常见类型

  • 高斯朴素贝叶斯(Gaussian Naive Bayes):用于处理连续数据,假设特征值服从高斯分布。
  • 多项式朴素贝叶斯(Multinomial Naive Bayes):适用于离散的多项式分布数据,常用于文本分类和词频统计。
  • 伯努利朴素贝叶斯(Bernoulli Naive Bayes):处理二元分布的数据,即特征只有0和1的情况,适合于如文档的词出现与否等场景。

计算步骤

  1. 计算先验概率:计算每个类别的先验概率 P(C)。
  2. 计算条件概率:计算每个特征在不同类别下的条件概率 P(xi∣C)。
  3. 应用贝叶斯定理:将新的数据代入贝叶斯公式,计算各个类别的后验概率。
  4. 选择类别:选择具有最高后验概率的类别作为预测结果。

3. 支持向量机(Support Vector Machine, SVM)


   原理:通过寻找最佳的分割超平面,将数据点分类到不同类别中。对非线性可分数据,通过核函数将数据映射到更高维空间。
   优点:在高维空间中仍表现良好,适用于线性和非线性数据。
   缺点:对大规模数据集的计算效率较低,内存消耗较大,对参数和核函数的选择敏感。

 4. K近邻(K-Nearest Neighbors, KNN)


   原理:通过计算样本点与已知类别数据点的距离,选择距离最近的K个点进行投票分类。
   优点:简单易懂,不需要训练过程。
   缺点:计算量大,对数据的尺度和噪声敏感。

SVM 的工作流程

  1. 数据准备:收集并预处理数据,确保数据标准化或归一化。
  2. 选择核函数:根据数据的特性选择合适的核函数(线性、RBF、多项式等)。
  3. 训练模型:使用训练数据进行模型训练,通过调整超参数(如惩罚参数C、核函数参数)优化模型。
  4. 预测和评估:使用测试数据进行预测,评估模型的性能(如准确率、召回率、F1-score)。
  5. 调整和优化:根据评估结果调整参数或选择其他核函数,迭代优化模型性能。

 5. 随机森林(Random Forest)


   原理:由多个决策树组成的集成模型,通过多数投票确定分类结果,有效降低过拟合风险。
   优点:抗噪声能力强,对特征的重要性进行排序,处理大数据集表现良好。
   缺点:对单个决策树的解释性较低,计算开销较大。

 6. 神经网络(Neural Networks)


   原理:通过模拟生物神经网络的结构,由多个神经元层组成,具有自学习和自适应能力。
   优点:适合处理复杂的非线性关系,能够自动提取特征。
   缺点:需要大量数据和计算资源,训练时间长,难以解释。


这些分类算法各有优劣,在实际应用中,选择合适的算法往往取决于具体的数据特征和任务需求。

随着神经网络的发展,目前来说,深度分类模型是性能较优的方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/412723.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32G474采用“多个单通道ADC转换”读取3个ADC引脚的电压

STM32G474采用“多个单通道ADC转换”读取3个ADC引脚的电压:PC0、PA1和PA2。本测试将ADC1_IN6映射到PC0引脚,ADC12_IN2映射到PA1引脚,ADC1_IN3映射到PA2引脚。 1、ADC输入 ADC输入电压范围:Vref– ≤ VIN ≤ Vref ADC支持“单端输入…

Java 集合Collection(List、Set)Map

集合的理解和优点 1)可以动态保存任意多个对象,使用比较方便!2)提供了一系列方便的操作对象的方法: add、remove、 set、 get等3)使用集合添加,删除新元素的示意代码- Java集合的分类 Java的集合类很多,主要分为两大类,如图: 1…

iPhone备忘录不小心删除了怎么办?

在日常使用iPhone的过程中,备忘录作为我们记录重要信息、灵感闪现和日常琐事的小帮手,其重要性不言而喻。然而,有时候因为操作失误或是不小心点击,我们可能会将珍贵的备忘录内容删除,这无疑会让人感到焦虑与不安。但请…

深入垃圾回收:理解GC的核心算法与实现

垃圾回收(Garbage Collection,GC)是现代编程语言中一项关键技术。它不仅解决了内存管理中的诸多问题,还为开发者提供了一个更高效、更安全的编程环境。本文将深入探讨GC的起源、主要算法以及这些算法在不同编程语言中的具体实现。…

考试:计算机网络(01)

网络功能和分类 计算机网络是计算机技术与通信技术相结合的产物,它实现了远程通信、远程信息处理和资源共享。 计算机网络的功能:数据通信、资源共享、管理集中化、实现分布式处理、负载均衡。 网络性能指标:速率、带宽(频带宽度或传送线路…

嵌入式数据库

概述 1.作用:存储大量数据,专业存储数据 存储在内存(数组,变量,链表)上的特点:程序运行结束,或者掉电,数据会丢失。 存储在硬盘(文件)上的特点…

vue3+ts+vite项目代码检查报错(vue-tsc)

报错原因:vue-tsc与typescrip版本不兼容 排查流程: 1、开始以为vue-tsc或者typescript版本太低,通过npm update更新,更新后还是报错 2、项目中package.json文件中typescript、vue-tsc版本并无兼容问题 3、控制台执行npm list发…

【HarmonyOS】模仿个人中心头像图片,调用系统相机拍照,从系统相册选择图片和圆形裁剪显示 (一)

【HarmonyOS】头像图片,调用系统相机拍照,从系统相册选择图片和圆形裁剪显示 (一) Demo效果展示: 方案思路: 使用photoAccessHelper实现系统相册选择图片的功能。此API可在无需用户授权的情况下&#xff…

万亿生成式AI市场,商汤迎来“长坡厚雪”

AI掀起了全球科技玩家的军备竞赛,然而声浪越强噪音越多,这个领域的混乱程度也变得远超以往。就连刚刚公布财报的英伟达,市场也没有买账,因为担心AI驱动的增长高峰已过,接下来,下游会更看重实际成果。 “囤…

javaee、ssm(maven)、springboot(maven)项目目录结构以及编译后文件目录存放路径

javaee项目目录结构: src下的文件或者是源码编译后都会放在WebRoot(项目根目录)文件夹\WebRoot\WEB-INF\classes目录中。 编译后的文件夹目录如下: 以上为普通的javaee项目目录结构,同maven工程目录结构是不一样的。…

07-图5 Saving James Bond - Hard Version(C)

哈哈,我是真的服了,写了好几天结果给我个这,气死我了,果然还有很大的进步空间。如果有c测试点4,就好了。 又写了一天,是真解决不了了,这个问题等我明白一定来解答 哈哈, 测试点提示内…

【SQL】餐馆营业额七日均线数据

目录 题目 分析 代码 题目 表: Customer ------------------------ | Column Name | Type | ------------------------ | customer_id | int | | name | varchar | | visited_on | date | | amount | int | -----------------------…

Docker 数据卷管理及优化

目录 1 数据卷实现的目的 2 为什么要用数据卷 3 docker的两种数据卷 3.1 bind mount 数据卷 实践实例: 3.2 docker managed 数据卷 实验实例: 3.3 bind mount 数据卷和docker managed 数据卷的对比 3.3.1 相同点: 3.3.2 不同点: …

【网络安全】服务基础第一阶段——第二节:Windows系统管理基础----虚拟化IP地址以及用户与组管理

目录 一、Windows网络测试工具 1.1.ping命令 1.2.tracert命令 二、IP实验内容 2.1 实验一 2.2 实验二 三、用户与组管理 3.1 用户与账户概述 3.2 用户管理 3.3 用户增删改查 3.4 增加用户 3.5 修改用户属性 3.6 删除用户 3.7 组账户概述 3.8 组账户增删改查 四、…

没有编程基础?这款数据分析工具也能轻松上手

在当前快节奏的工业环境中,工厂管理者越来越依赖数据分析来优化生产流程、提升效率、降低成本。然而,很多传统的数据分析工具不仅操作复杂,而且费用高昂,让不少工厂望而却步。最近,我发现了一款非常实用的报表工具&…

安卓主板_MTK安卓主板定制_联发科主板/开发板方案

这款安卓主板采用了联发科的MTK8788、MTK8768及MTK8766系列芯片平台,运用了64位四核/八核 Cortex-A53/A73架构,主频高达2.0 GHz。主板配置了4GB LPDDR3内存和64GB eMMC存储,同时配备了ARM Mail-T450 MP2图形处理单元(GPU),使其在4…

Java性能优化传奇之旅--Java万亿级性能优化之电商平台高峰时段性能大作战:策略与趋势洞察

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

【Linux】共享内存

目录 原理 代码 在之前,无论是匿名管道还是命名管道,说到底都是基于文件的通信,也就意味着没有为了通信让OS单独设计一套通信模块代码,而是直接复用内核中文件相关的数据结构、缓冲区、代码来实现通信的,这在一定程度…

ET6框架(七)Excel配置工具

文章目录 一、Excel表的基本规则:二、特殊特殊标记三、编译路径说明四、动态获取数据五、可导表类型查看: 一、Excel表的基本规则: 在框架中我们的Excel配置表在ET > Excel文件夹中 1.在表结构中需要注意的是起始点必须在第三行第三列,且…

鸿蒙开发 数组改变,ui渲染没有刷新

问题描述: 数组push, 数组长度改变,ui也没有刷新 打印出了数组 console.log(this.toDoData.map(item > ${item.name}).join(, ), this.toDoData.length) 原代码: Text().fontSize(36).margin({ right: 40 }).onClick(() > {TextPicker…