【STM32】BKP备份寄存器与RTC实时时钟

本篇博客重点在于标准库函数的理解与使用,搭建一个框架便于快速开发

目录

BKP简介

 BKP代码注解

读写备份寄存器

复位备份寄存器

BKP代码

RTC简介

RTC代码注解 

RTCCLK时钟源选择

分频器配置

时钟同步

RTC代码

MyRTC.h

 MyRTC.c

main.c 


BKP简介

BKP(Backup Registers)备份寄存器 ,可用于存储用户应用程序数据。

  • 当VDD(2.0~3.6V)电源被切断,BKP仍然由VBAT(1.8~3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,BKP也不会被复位,所有备份寄存器内容不被清除
  • BKP控制寄存器还用来管理侵入检测和RTC校准功能。
  • TAMPER引脚产生的侵入事件将所有备份寄存器内容清除
  • 在PC13(即RTC)引脚上,(当该引脚不用于侵入检测时)可输出RTC校准时钟,RTC闹钟脉冲或者秒脉冲

 BKP代码注解

来自参考手册

系统复位后,对后备寄存器和RTC的访问被禁止,这是为了防止对后备区域(BKP)的意外写操作。执行以下操作将使能对后备寄存器和RTC的访问:

● 设置寄存器RCC_APB1ENR的PWREN和BKPEN位,使能电源和后备接口时钟

● 设置电源控制寄存器PWR_CR的DBP位,使能对后备寄存器和RTC的访问

BKP,PWR,RTC均在APB1总线上

由RCC时钟树,需使能APB1总线上BKP,PWR的时钟

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP,  ENABLE);//使能电源和后备接口时钟PWR_BackupAccessCmd(ENABLE);//设置电源控制寄存器PWR_CR的DBP位,使能对后备寄存器和RTC的访问

读写备份寄存器

用户数据存储容量:20字节(中容量和小容量)/ 84字节(大容量和互联型)

//BKP_DRx: x根据容量选择,x:[1, 42]
//BKP_DR为16位数据类型BKP_WriteBackupRegister(BKP_DR1, 0xA5A5); //写备份寄存器
BKP_ReadBackupRegister(BKP_DR1);//读备份寄存器

复位备份寄存器

BKP_DRx寄存器不会被系统复位、电源复位、从待机模式唤醒所复位。 它们可以由备份域复位来复位或(如果侵入检测引脚TAMPER功能被开启时)由侵入引脚事件复位

当然也可以通过写所有的备份寄存器为0来复位

BKP_DeInit();//备份域复位,复位BKP寄存器,清除备份寄存器数据

BKP代码

main.c 

#include "stm32f10x.h"                  // Device header
#include "OLED.h"
#include "Key.h"uint8_t KeyNum;int main(void)
{OLED_Init();Key_Init();RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP,  ENABLE);PWR_BackupAccessCmd(ENABLE);while(1){KeyNum = Key_Scan();if( KeyNum == 1){BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);}if( KeyNum == 2){BKP_DeInit();}OLED_ShowHexNum(1, 1, BKP_ReadBackupRegister(BKP_DR1), 4);}
}

RTC简介

RTC(Real Time Clock)实时时钟,是一个独立的定时器,可为系统提供时钟和日历的功能

RTC和时钟配置系统(RCC_BDCR寄存器)处于后备区域,系统复位或从待机模式唤醒时,数据不清零,RTC的设置和时间维持不变VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时

32位的可编程计数器,可对应Unix时间戳的秒计数器

20位的可编程预分频器,可适配不同频率的输入时钟

RTC框图

STM32F10xxx可选择三种RTCCLK:     

HSE(外部高速)时钟除以128(通常为8MHz/128)   

LSE(外部低速)振荡器时钟(通常为32.768KHz)   

LSI(内部低速)振荡器时钟(40KHz)

只有中间这一路的时钟,可以通过VBAT备用电池供电,上下两路时钟,在主电源断电后,是停止运行的

外接晶振

外部高速晶振(银白色)为8MHz,外部低速晶振(黑色)为32.768KHz

STM32的晶振电路

RTC代码注解 

RTCCLK时钟源选择

一旦RTC时钟源被选定,直到下次后备域被复位,它不能在被改变。

	//选择LSERCC_LSEConfig(RCC_LSE_ON);//开启LSE时钟while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);// 等待外部32.3768kHz振荡器就绪RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);//RTCCLK通过时钟选择器选择LSE时钟RCC_RTCCLKCmd(ENABLE);//使能RTCCLK/*选择LSI:40kHzRCC_LSEConfig(RCC_LSE_ON);while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);RCC_RTCCLKCmd(ENABLE);
*/

分频器配置

通过设置重装载寄存器RTC_PRL为 32768 - 1设置RTCCLK分频系数 ,计数器为重装载值,自减到0后的下一个时钟上升沿溢出 ,为后面的计数器产生1s的时钟

  RTC_SetPrescaler(32768 - 1);RTC_WaitForLastTask();//等待上一次对RTC寄存器的写操作已经完成。

时钟同步

读取RTC寄存器,软件必须等待RSF(寄存器同步标志)为1,以确保RTC_CNT、RTC_ALR或RTC_PRL已经被同步

除了RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器外,所有的系统寄存器都由系统复位或电源复位进行异步复位。 RTC_PRL、RTC_ALR、RTC_CNT和RTC_DIV寄存器仅能通过备份域复位信号复位

	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5) {
/* 每次更新程序,初始化函数中,都会重新设置时间,使用备份寄存器的数据置标志位,标记是否第一次RTC设置时间
只有主电源和备用电源都掉电,再重新初始化RTC,设置时间
*/RCC_LSEConfig(RCC_LSE_ON);while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);RCC_RTCCLKCmd(ENABLE);RTC_WaitForSynchro();//等待时钟同步RTC_WaitForLastTask();//之前没有写RTC寄存器,不调用也可RTC_SetPrescaler(32768 - 1);RTC_WaitForLastTask();MyRTC_SetTime();//设置计时时间BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);//写备份寄存器,相当于标志位,已经初始化}else{//防止意外,不调用也可RTC_WaitForSynchro();RTC_WaitForLastTask();}

RTC代码

time.c文件函数

函数作用

struct tm* localtime(const time_t*);

秒计数器转换为日期时间(当地时间)

time_t mktime(struct tm*);

日期时间转换为秒计数器(当地时间)

秒计数器为0代表伦敦的1970-1-1 0:0:0

单片机通过库函数并不能获取当地时间,需要自己给计数器值加时间偏移。

MyRTC.h

#ifndef __MYRTC_H
#define __MYRTC_Hextern uint16_t MyRTC_Time[];void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);#endif

 MyRTC.c

#include "stm32f10x.h"                  // Device header
#include <time.h>uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};//储存时间void MyRTC_SetTime(void);void MyRTC_Init(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);PWR_BackupAccessCmd(ENABLE);if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5){RCC_LSEConfig(RCC_LSE_ON);while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);RCC_RTCCLKCmd(ENABLE);RTC_WaitForSynchro();RTC_WaitForLastTask();RTC_SetPrescaler(32768 - 1);RTC_WaitForLastTask();MyRTC_SetTime();BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);}else{RTC_WaitForSynchro();RTC_WaitForLastTask();}
}//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI(40KHz)当作RTCCLK
/* 
void MyRTC_Init(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);PWR_BackupAccessCmd(ENABLE);if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5){RCC_LSICmd(ENABLE);while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);RCC_RTCCLKCmd(ENABLE);RTC_WaitForSynchro();RTC_WaitForLastTask();RTC_SetPrescaler(40000 - 1);RTC_WaitForLastTask();MyRTC_SetTime();BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);}else{//LSE可由备用电源供电,LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停//每次复位,需重新初始化LSI作为RTCCLK时钟RCC_LSICmd(ENABLE);while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);RCC_RTCCLKCmd(ENABLE);//RTC_WaitForSynchro();RTC_WaitForLastTask();}
}*/void MyRTC_SetTime(void)
{time_t time_cnt;struct tm time_date;time_date.tm_year = MyRTC_Time[0] - 1900;//年份从1900开始储存,最小值为70time_date.tm_mon = MyRTC_Time[1] - 1; //0~11表示1到12月time_date.tm_mday = MyRTC_Time[2];time_date.tm_hour = MyRTC_Time[3];time_date.tm_min = MyRTC_Time[4];time_date.tm_sec = MyRTC_Time[5];time_cnt = mktime(&time_date) - 8 * 60 * 60;//MyRTC_Time数组代表的时间减去8小时的秒数,东八区,time_cnt为英国格林尼治1970-01-01 00:00:00至今的秒数RTC_SetCounter(time_cnt);RTC_WaitForLastTask();
}void MyRTC_ReadTime(void)
{time_t time_cnt;struct tm time_date;time_cnt = RTC_GetCounter() + 8 * 60 * 60;//time_cnt为英国格林尼治1970-01-01 00:00:00至今的秒数+加上8小时的秒数time_date = *localtime(&time_cnt);MyRTC_Time[0] = time_date.tm_year + 1900;MyRTC_Time[1] = time_date.tm_mon + 1;MyRTC_Time[2] = time_date.tm_mday;MyRTC_Time[3] = time_date.tm_hour;MyRTC_Time[4] = time_date.tm_min;MyRTC_Time[5] = time_date.tm_sec;
}

main.c 

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"int main(void)
{OLED_Init();MyRTC_Init();OLED_ShowString(1, 1, "Date:XXXX-XX-XX");OLED_ShowString(2, 1, "Time:XX:XX:XX");OLED_ShowString(3, 1, "CNT :");OLED_ShowString(4, 1, "DIV :");while (1){MyRTC_ReadTime();OLED_ShowNum(1, 6, MyRTC_Time[0], 4);OLED_ShowNum(1, 11, MyRTC_Time[1], 2);OLED_ShowNum(1, 14, MyRTC_Time[2], 2);OLED_ShowNum(2, 6, MyRTC_Time[3], 2);OLED_ShowNum(2, 9, MyRTC_Time[4], 2);OLED_ShowNum(2, 12, MyRTC_Time[5], 2);OLED_ShowNum(3, 6, RTC_GetCounter(), 10);OLED_ShowNum(4, 6, RTC_GetDivider(), 10);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/413649.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手把手教你从开发进度划分测试

一.单元测试&#xff08;Unit Testing&#xff09; 单元测试&#xff1a;软件单元测试的对象是可独立编译或汇编的程序模块。测试的对象是软件测试中的最小单位&#xff1a;模块。 测试阶段&#xff1a;编码后或者编码前&#xff08;TDD&#xff1a;测试驱动开发&#xff09;…

【网络基础】探索 NAT 技术:IP 转换、NAPT、NAT穿越及代理服务器

文章目录 1. 前言2. IP 转换过程3. NAPT① 基本概念② 工作原理③ 优缺点④ 实际应用 4. 缺陷5. NAT 穿越① 概述② 示例 6. NAT 与 代理服务器① 代理服务器与NAT的区别&#xff1a;② 正向代理 / 反向代理 服务器 1. 前言 NAT&#xff08;网络地址转换&#xff09;是一种常见…

Python数据清洗基础

在Python中进行数据清洗和可视化是一个多步骤的过程&#xff0c;涉及到数据的读取、预处理、分析和图形表示。以下是一些关键步骤和代码示例&#xff0c;这些步骤可以帮助你从原始数据中提取有价值的信息&#xff0c;并以直观的方式展示。 数据清洗 读取数据&#xff1a; im…

【Python 千题 —— 基础篇】评论倾向分析

Python 千题持续更新中 …… 脑图地址 👉:⭐https://twilight-fanyi.gitee.io/mind-map/Python千题.html⭐ 题目描述 在某个电商平台的评论系统中,用户可以提交商品评论。为了分析评论的情感倾向,我们需要编写一个程序来处理用户评论,并对评论内容进行简单的分析和处理。…

Mac/Linux系统matplotlib中文支持问题

背景 matplotlib是python中最常用的数据可视化分析工具&#xff0c;Mac和Linux系统无中文字体&#xff0c;不支持中文显示&#xff08;希望后续可以改进&#xff09;&#xff0c;需要进行字体的下载和设置才能解决。笔者经过实践&#xff0c;发现Mac系统和Linux系统解决方案略…

1.【R语言】R语言的下载和安装

R语言是一种开源编程语言&#xff0c;它提供了丰富的统计模型和图形绘制功能&#xff0c;广泛用于数据科学、统计分析、数据挖掘和机器学习。R有一个活跃的社区和大量的包&#xff0c;可以满足各种需求&#xff0c;如数据清洗、绘图和报告生成。其强大的数据处理能力和灵活的可…

Ant Design vue 多层for循环form表单自定义校验

数据结构如下&#xff1a;三维数组。 注意&#xff1a;<a-form-model>一定得写在for外面&#xff01;&#xff01;&#xff01;&#xff01; <!-- 弹出框 --> <a-modal:title"title":dialog-style"{ top: 20px }":visible"visible&quo…

Datawhale X 李宏毅苹果书 AI夏令营 入门 Task2-了解线性模型

目录 线性模型分段线性曲线模型变形 线性模型 输入的特征 x 乘上一个权重&#xff0c;再加上一个偏置就得到预测的结果&#xff0c;这样的模型称为线性模型。 分段线性曲线 线性模型有很大的限制&#xff0c;这一种来自于模型的限制称为模型的偏差&#xff0c;无法模拟真实的…

Bluetooth: att protocol

一篇搞懂 ATT 支持的东西都有什么。 READ_BY_GROUP_TYPE_REQ/RSP 如下是 Spec 内容&#xff1a; The attributes returned shall be the attributes with the lowest handles within the handle range. These are known as the requested attributes.If the attributes with th…

零知识证明-基础数学(二)

零知识证明(Zero—Knowledge Proof)&#xff0c;是指一种密码学工具&#xff0c;允许互不信任的通信双方之间证明某个命题的有效性&#xff0c;同时不泄露任何额外信息 导数、偏导数 ,互质数&#xff0c;费马小定理&#xff0c;欧拉定理 1 导数 导数是微积分学中的重要概念&am…

科研绘图系列:R语言组合图形绘图

介绍 柱状图、箱线图和棒棒图组合 加载R包 # Library library(ggplot2) library(dplyr) library(forcats)读取数据 data <- data.frame(name=c("north","south","south-east","north-west","south-west","north…

jquery下载的例子如何应用到vue中

参考测试圈相亲平台开发流程&#xff08;4&#xff09;&#xff1a;选个漂亮的首页 (qq.com) 下载的文件夹解压到v_love项目的pubilc下的static文件夹内&#xff0c;这里放的都是我们的静态资源。 打开文件夹内的index.html&#xff0c;我们先确定下它是不是我们要的东西&…

基于yolov10的PCB检测算法研究

内容&#xff1a;项目将YOLOV10创新后的PCB检测算法成功部署到GD32H757上&#xff0c;实现PCB缺陷的工业产线实时检测。 项目主要支持开源代码&#xff1a;HomiKetalys/gd32ai-modelzoo: Provide deployable deep learning models on gd32 (github.com) &#xff08;想了解将…

信息打点-红队工具篇FofaQuakeKunyuSuize水泽Arl灯塔

知识点&#xff1a; 1、网络空间四大引擎-Fofa&Quake&Shodan&Zoomeye 2、自动化信息收集项目-ARL灯塔&Suize水泽&Kunyu坤舆 3、单点功能信息收集项目-企查&子域名&指纹识别&社工信息 黑暗引擎&#xff1a; https://fofa.info https://qua…

GPT-4 vs LLaMA3.1:核心技术架构与应用场景对比

目录 前言 一、GPT-4 的核心技术架构 1.1 Transformer 结构概述 1.2 GPT-4 的主要组成部分 1.3 GPT-4 的创新与改进 二、LLaMA3.1 的核心技术架构 2.1 模型概述 2.2 LLaMA3.1 的主要组成部分 2.3 LLaMA3.1 的创新与改进 三、GPT-4 和 LLaMA3.1 的主要差异 3.1 模型规…

Native开发与逆向第五篇 - hook log打印

开发demo 新建native项目&#xff0c;实现log打印字符串。 下载地址&#xff1a;https://download.csdn.net/download/u013170888/89698015 #include <android/log.h> #define LOGI(...) __android_log_print(ANDROID_LOG_INFO, "JNI_LOG", __VA_ARGS__)exte…

WireShark网络分析~部署方式

一、《Wireshark网络分析就这么简单》 第一章学习 声明&#xff1a;文章只限于网络学习和实验&#xff0c;请遵守《网络安全法》。 第一章问题一&#xff1a;两台服务器A和B的网络配置如下(见图1)&#xff0c;B的子网掩码本应该是255.255.255.0&#xff0c;被不小心配成了255.…

深入解析C#中的锁机制:`lock(this)`、`lock(privateObj)`与`lock(staticObj)`的区别

前言 在C#的多线程编程中&#xff0c;lock关键字是确保线程安全的重要工具。它通过锁定特定的对象&#xff0c;防止多个线程同时访问同一块代码&#xff0c;从而避免数据竞争和资源冲突。然而&#xff0c;选择适当的锁对象对于实现高效的线程同步至关重要。本文将深入探讨使用…

无人机之电池篇

无人机电池作为无人机的重要组成部分&#xff0c;其性能、使用、保养及选择都至关重要。以下是对无人机电池的综合介绍&#xff1a; 一、无人机电池的基本参数 电池容量&#xff1a;电池容量直接影响无人机的续航能力。大容量电池&#xff0c;如5000mAh的电池&#xff0c;能提…

Python模块内容总结

参考&#xff1a; Python 模块 | 菜鸟教程 (runoob.com) Python 模块(Module)&#xff0c;是一个 Python 文件&#xff0c;以 .py 结尾&#xff0c;包含了 Python 对象定义和Python语句。 模块让你能够有逻辑地组织你的 Python 代码段。 把相关的代码分配到一个模块里能让你的代…