【Matlab】时间序列模型(ARIMA)

文章目录

  • 前言
  • 一、示例
  • 二、代码实现----Matlab
    • 全部数据的平稳性检验
      • ADF检验
      • 图检验法
    • 划分训练集
      • 平稳性检验
      • 确定 p,q
      • 结果分析和模型检验
      • 模型预测


前言

接上一篇博客,用 Matlab 完成代码编写。
【学习笔记】时间序列模型(ARIMA)

一、示例

  • 已知一个上市公司一段时期的开盘价,最高价,最低价,收盘价等信息,要求建立模型,预测股价。
  • 这里只需要股票的收盘价(close),我们可以把数据提取出来,并划分为训练集和测试集
  • 本题我们把1-3月份的数据作为训练集,4-6月份的数据作为测试集

二、代码实现----Matlab

全部数据的平稳性检验

%% 数据读取
% 读取 CSV 文件
filename = 'ChinaBank.csv';
data = readtable(filename);% 读取文件中的两列
close_data = data.Close;
date_data = data.Date;% 一阶差分
close_dif1 = diff(close_data);
% 二阶差分
close_dif2 = diff(close_data, 2);% 创建一个新的图形窗口并设置其大小
figure('Position', [100, 100, 1200, 1000]); subplot(3, 1, 1);
plot(date_data,close_data); 
title('原始数据');
xlabel('日期');
ylabel('收盘价');% 绘制一阶差分数据
subplot(3, 1, 2);
plot(date_data(2:end), close_dif1);
title('一阶差分');
xlabel('日期');
ylabel('差分值');% 绘制二阶差分数据
subplot(3, 1, 3);
plot(date_data(3:end), close_dif2);
title('二阶差分');
xlabel('日期');
ylabel('差分值');

运行结果:

在这里插入图片描述

结果分析:

可以看出,一阶差分和二阶差分后,平稳性变好。

ADF检验

Matlab 的 adftest 函数

[h, pValue, stat, cValue] = adftest(y);

返回值解释

  1. h:检验结果

    h 是一个逻辑值,表示检验结果:

    • 1:拒绝原假设(即,时间序列是平稳的)。
    • 0:无法拒绝原假设(即,时间序列可能存在单位根或是非平稳的)。
  2. pValue:p 值

    pValue 是一个实数,表示检验统计量的 p 值。p 值越小,拒绝原假设的证据越强。通常,如果 p 值小于某个显著性水平(如 0.05),则拒绝原假设。

  3. stat:检验统计量

    stat 是一个实数,表示 ADF 检验的统计量。这个值用于与临界值进行比较,以决定是否拒绝原假设。

  4. cValue:临界值

    cValue 是一个向量,包含不同显著性水平(如 1%、5%、10%)下的临界值。用于与统计量 stat 进行比较。

Matlab 代码

% 进行ADF检验
[h, pValue, stat, cValue] = adftest(close_data);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:

在这里插入图片描述

结果分析:

  • ADF 检验结果为 0,则无法拒绝原假设,表示时间序列可能是非平稳的。
  • p 值为 0.96618,大于 0.05,无法拒绝原假设。
  • 统计量为 1.485,大于临界值 -1.9416,无法拒绝原假设。

图检验法

  1. 原始数据
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(close_data, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(close_data, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述
结果分析:

ACF中,大部分的值没有落在置信区间内,所以不具有平稳性。

  1. 一次差分
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(close_dif1, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(close_dif1, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述
结果分析:

由图形可以看出,大部分的值都落在了置信区间内。

划分训练集

train = close_data(1:62);
test = close_data(63:127);

平稳性检验

ADF检验

  1. 原训练集
% 进行ADF检验
[h, pValue, stat, cValue, reg] = adftest(train);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:

在这里插入图片描述
平稳性并不理想,所以考虑一次差分。(和python运行出来的结果不一致,此处存疑

  1. 训练集进行一次差分
train_dif1 = diff(train);
% 进行ADF检验
[h, pValue, stat, cValue, reg] = adftest(train_dif1);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:
在这里插入图片描述
通过平稳性检验。

图检验法

  1. 原训练集
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(train, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(train, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述

平稳性并不理想,所以考虑一次差分。(和python运行出来的结果不一致,此处存疑

  1. 训练集进行一次差分
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(train_dif1, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(train_dif1, 20);
title('偏自相关函数(PACF)');

运行结果:
在这里插入图片描述

通过平稳性检验。

确定 p,q

1. 相关函数法

由训练集一次差分后的 ACF 和 PACF 图可以看出,呈现不规则衰减,p 、q的值难以直接判断。

2. AIC、BIC准则

% 定义候选模型阶数范围
maxP = 8;
maxQ = 8;
n = length(train);% 初始化结果存储
aicValues = NaN(maxP, maxQ);
bicValues = NaN(maxP, maxQ);% 迭代计算所有候选模型的AIC和BIC值
for p = 0:maxPfor q = 0:maxQtryMdl = arima(p,1,q);[~,~,logL] = estimate(Mdl, train, 'Display', 'off');numParam = p + q + 1; % p个AR参数, q个MA参数, 1个差分项[aicValues(p+1, q+1),bicValues(p+1, q+1)] = aicbic(logL, numParam, n);catch% 忽略无法估计的模型continue;endend
end% 找到AIC最小值对应的(p, q)
[minAIC, idxAIC] = min(aicValues(:));
[pAIC, qAIC] = ind2sub(size(aicValues), idxAIC);
pAIC = pAIC - 1;
qAIC = qAIC - 1;% 找到BIC最小值对应的(p, q)
[minBIC, idxBIC] = min(bicValues(:));
[pBIC, qBIC] = ind2sub(size(bicValues), idxBIC);
pBIC = pBIC - 1;
qBIC = qBIC - 1;fprintf('AIC选择的模型阶数: p = %d, q = %d\n', pAIC, qAIC);
fprintf('BIC选择的模型阶数: p = %d, q = %d\n', pBIC, qBIC);

运行结果:

在这里插入图片描述
在这里插入图片描述
姑且先选择 AIC 准则的结果:p = 7,q = 6。此处存疑

结果分析和模型检验

残差序列的随机性可以通过自相关函数法来检验,即做残差的自相关函数图

model = arima(7,1,6);
md1 = estimate(model, train, 'Display', 'off');% 检查残差的自相关性
residuals = infer(md1, train);
figure;
autocorr(residuals);
title('Residuals Autocorrelation');

运行结果:

在这里插入图片描述

结果分析:从 ACF 图中可以看出残差之间独立性比较高。

模型预测

numPeriods = length(test);
[Y, YMSE] = forecast(md1, numPeriods, 'Y0', train);origin_close = close_data(1:127);
origin_date = date_data(1:127);
% 绘制预测结果与真实值的比较
figure('Position', [100, 100, 1200, 700]); 
plot(origin_date,origin_close, test_date, Y);
legend('真实值','预测值');
title('ARIMA 模型预测结果');
xlabel('时间');
ylabel('值');

运行结果:

在这里插入图片描述
向后预测了三个月的数据。

代码改进见博客:

时间序列模型(ARIMA) — — 预测未来(含 python 和 Matlab 的完整代码)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/414082.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Pandas 9-绘制柱状图

1. 准备数据 首先,需要准备一个DataFrame。 import pandas as pd # 创建一个DataFrame data { Name: [Alice, Bob, Charlie, David], Age: [24, 27, 22, 32], City: [New York, Los Angeles, Chicago, Houston], Score: [85, 92, 78, 88]} df pd.…

sql-labs46-50通关攻略

第46关 一.查询数据库 http://172.16.1.142/Less-46/?sort1%20and%20updatexml(1,concat(0x7e,(select%20database()),0x7e),1)--http://172.16.1.142/Less-46/?sort1%20and%20updatexml(1,concat(0x7e,(select%20database()),0x7e),1)-- 二.查表 http://172.16.1.142/Les…

软件测试 | 测试用例

测试用例(Test Case)是为了实施测试而向被测试的系统提供的一组集合,这组集合包含:测试环境,测试步骤,测试数据,预期结果等要素。 设计测试用例原则⼀: 测试用例中⼀个必需部分是对…

【微机原理】指令JZ和JNZ的区别

🌟 嗨,我是命运之光! 🌍 2024,每日百字,记录时光,感谢有你一路同行。 🚀 携手启航,探索未知,激发潜能,每一步都意义非凡。 JZ(Jump …

php特性刷题

93 上面注释的是一些配置信息 然后包含flag.php页面 高亮显示 如果,先判断是否存在GET传参的参数num,如果弱比较等于4476,就会输出“no non no !” 如果包含字母那么就错误(包含大小写) 判断变量 $num 是否等于 4…

QEMU - user network

Documentation/Networking - QEMUQEMU/KVM中的网络虚拟化--Part2 User Networking | Xiaoye Zhengs blog (zxxyy.github.io)QEMU Network — ARM SoC Device Assignment Notes documentation (cwshu.github.io)slirp / libslirp GitLabGitHub - virtualsquare/libvdeslirp: li…

Python中排序算法之选择排序

选择排序算法是对《Python中排序算法之冒泡排序》中提到的冒泡排序算法的改进。 1 选择排序原理 选择排序是在参加排序的所有元素中找到数值最小(或最大)的元素,如果它不是左侧第一个元素,就使它与左侧第一个元素中的数据相互交…

Mysql8利用binlog实现数据恢复

文章目录 1binlog基本概念2 binlog相关常用命令3 binlog工具mysqlbinlog4 测试数据准备&导入数据5 模拟误删表6 数据恢复方式说明7 数据恢复分析(偏移量方式恢复)8 数据恢复9 验证10 数据恢复的局限性11 总结 1binlog基本概念 binlog即binary log,二进制日志文件…

Python爬虫02

xml 和html 区别 jsonpath模块 场景 多层嵌套的复杂字典直接提取数据 安装 pip install jsonpath使用 from jsonpath import jsonpathret jsonpath(dict, jaonpath语法规则字符串)语法规则 eg:

基于PHP评论区的存储型XSS漏洞

评论区的XSS漏洞是指攻击者在评论区输入恶意脚本,当其他用户浏览该页面时,这些恶意脚本会被执行,从而造成安全威胁。这种漏洞通常出现在网站没有对用户输入进行充分过滤和转义的情况下,为存储型XSS。存储型XSS攻击是指攻击者在目标…

使用 EasyExcel 高效读取大文件 Excel

使用 EasyExcel 高效读取大文件 Excel 的最佳实践 在现代应用中,数据处理经常涉及到大规模数据集的处理,Excel 作为一种常见的文件格式,经常用于数据导入和导出。然而,传统的 Excel 处理库如 Apache POI 在处理大文件时可能会面临…

实战项目:俄罗斯方块(一)

文章目录 🍊自我介绍🍊vt100 控制码1.概述2.数字格式①常用数字控制码②常用控制码 🍊绘制方格 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连)哦~ 🍊自我…

关于VUE3开发频繁引入ref,reactive,computed等基础函数。

利用unplugin-auto-import插件可以避免频繁引入ref,reactive,computed等基础函数。 1.安装unplugin-auto-import依赖 npm i -D unplugin-auto-import 2.在vite.config.ts中注入依赖 效果

Webfunny前端监控如何搭建高并发使用场景

Webfunny可以支持千万级别PV的日活量了。但是,我们默认的部署配置,是无法支持这么高的日活量的,需要我们做一些支持高并发的配置和操作,下面让我们一起看下如何让webfunny支持更高的并发量吧,下图为webfunny高并发架构…

AI安全前沿:模型攻击与防御策略

引言 随着chatGPT的横空出世,通用人工智能的时代正式开启。人工智能极大地影响了人类的生活方式和生产方式,例如以ChatGPT为代表的各类大模型,能够理解和生成人类语言,并以对话的方式同人类进行互动,能够执行撰写文本…

Hot Chips 2024:博通(Broadcom)展示AI计算ASIC的光学连接

引言 在2024年的Hot Chips会议上,博通展示了其最新的AI计算专用集成电路(ASIC),这款ASIC集成了光学连接技术。这一展示不仅体现了博通在定制AI加速器领域的领先地位,也预示着未来数据中心网络技术的一个重要发展方向。…

重塑视频监控体验:WebRTC技术如何赋能智慧工厂视频高效管理场景

视频汇聚EasyCVR视频监控平台,作为一款智能视频监控综合管理平台,凭借其强大的视频融合汇聚能力和灵活的视频能力,在各行各业的应用中发挥着越来越重要的作用。 EasyCVR平台不仅兼容多种主流标准协议及私有协议/SDK的接入(如&…

qt实现三原色滑动条变色

在qt中有这样一个控件: 就是这个Horizontal Slider他的作用相信大家都知道了,也就是通过滑动来改变数值。今天我们就使用这个控件实现一个三原色滑动变色。 实现效果: 1.创建UI界面 这个就不用多说了,这个大家就按照我的这个去…

Python虚拟环境创建和使用总结

参考: venv --- 虚拟环境的创建 — Python 3.12.5 文档 【Python进阶】Python虚拟环境使用全方位指南:从零开始轻松实践 - 知乎 (zhihu.com) Python 如何删除使用 venv 创建的 Python3 虚拟环境|极客教程 (geek-docs.com) 我们知道,python程序…

【C/C++】C++类与对象基本概念(抽象封装、类的定义与使用、构造函数、析构函数、静态成员、友元)

目录 七、类与对象基本概念7.1 抽象7.2 类的定义与声明7.3 访问控制7.4 类的实现与使用7.5 对象指针、this指针与对象引用7.6 构造函数7.7 析构函数7.8 拷贝构造函数7.9 类类型作为函数参数7.10 对象数组7.11 静态成员7.12 常对象与常成员(const)7.13 友…