《OpenCV计算机视觉》—— 对图片的各种操作

文章目录

  • 1、安装OpenCV库
  • 2、读取、显示、查看图片
  • 3、对图片进行切割
  • 4、改变图像的大小
  • 5、图片打码
  • 6、图片组合
  • 7、图像运算
  • 8、图像加权运算

1、安装OpenCV库

  • 使用pip是最简单、最快捷的安装方式

    pip install opencv-python==3.4.2
    
  • 还需要安装一个包含了其他一些图像处理算法函数的opencv扩展库

    pip install opencv-contrib-python==3.4.2
    
  • 注意:安装的版本可以自行选择与自己python适配的进行安装,但是这两个库的版本必须是一致的

2、读取、显示、查看图片

  • 读取图像:使用cv2.imread(filename, flags)函数,其中filename是图像的路径,flags指定读取图像的方式(如灰度图像、彩色图像等)。
  • 显示图像:使用cv2.imshow(window_name, image)函数,其中window_name是窗口名称,image是要显示的图像。之后,通常使用cv2.waitKey(delay)等待用户按键,最后使用cv2.destroyAllWindows()关闭所有窗口。
    Man = cv2.imread('kobe.jpg')
    cv2.imshow('8-24', Man)
    # 可以给定规定显示的时间,单位为毫秒,0表示一直显示
    # 若是想结束显示,可以在英文状态下按下电脑键盘上的任意键
    # 若是用变量接收,再打印出这个变量,则会返回你所按下键的ASCII码值
    b = cv2.waitKey(0)
    print(b)   # 可以显示出所按键的ASCII码值
    # 关闭窗口
    cv2.destroyAllWindows()
    # 可以通过 shape dtype size 来查看图片的每个维度的大小、类型、总体大小
    print(Man.shape)
    print(Man.dtype)
    print(Man.size)
    
    在这里插入图片描述
    在这里插入图片描述

3、对图片进行切割

import cv2
M = cv2.imread('kobe.jpg')
# 给定所想切出的长宽大小范围,并用变量接收
A = M[0:800, 0:800]
B = M[500:800, 500:800]
cv2.imshow('qiepian_A', A)
cv2.imshow('qiepian_B', B)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

4、改变图像的大小

import cv2
M = cv2.imread('kobe.jpg')
# 可以直接指定需要的图片大小,也可以指定大小,对长宽进行百分比的缩放
# M_new = cv2.resize(M, (400, 600)) 
M_new = cv2.resize(M, dsize=None, fx=0.6, fy=0.6)  # dsize 不指定规定大小
cv2.imshow('M', M)
cv2.imshow('M_new', M_new)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

5、图片打码

import cv2
import numpy as np
M = cv2.imread('kobe.jpg')
# 给出需要打码的区域,运用numpy的方法随机选取[0~255]的像素,并给定打码的大小
# 注意这里打码的长宽大小必须与打码区域的长宽大小相同
M[100:200, 200:300] = np.random.randint(0, 256, (100, 100, 3))  # 矩阵赋值必须是相同大小
cv2.imshow('masaike', M)
cv2.waitKey(1000000)
cv2.destroyAllWindows()

在这里插入图片描述

6、图片组合

M = cv2.imread('kobe.jpg')
# MB.jpg 是 kobe.jpg 灰度图,为了可以让效果看的明显一点
M1 = cv2.imread('MB.jpg')
# 设置第一张需要替换的位置长宽大小必须和第二张图片相同
M[500:700, 500:700] = M1[300:500, 300:500]
cv2.imshow('M', M)
cv2.waitKey(100000)
cv2.destroyAllWindows()

在这里插入图片描述

7、图像运算

  • 图像+号运算

    # 对于+号运算,当对图像a,图像b进行加法求和时,遵循以下规则:
    # 当某位置像素相加得到的数值小于255时,该位置数值为两图像该位置像素相加之和
    # 当某位置像素相加得到的数值大于255时,该位置数值将截断结果并将其减去 256 例如:相加后是260,实际是260-256=4
    M = cv2.imread('kobe.jpg')
    I = cv2.imread('wechat.jpg')
    MM = M + 50 
    # 需要将相加起来的区域大小设置成相同的
    MI = M[500:700, 500:700] + I[500:700, 500:700]
    cv2.imshow('MM', MM)
    cv2.imshow('MI', MI)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    

    在这里插入图片描述

  • 图像 add 运算

    M = cv2.imread('kobe.jpg')
    I = cv2.imread('wechat.jpg')
    # 将两张图片的大小设置成相同的
    M = cv2.resize(M, (400, 400))
    I = cv2.resize(I, (400, 400))
    MI = cv2.add(M, I)
    cv2.imshow('MI', MI)
    cv2.waitKeyEx(100000)
    cv2.destroyAllWindows()
    

    在这里插入图片描述

8、图像加权运算

M = cv2.imread('wechat.jpg')
I = cv2.imread('wechat2.jpg')
M = cv2.resize(M, (600, 500))
I = cv2.resize(I, (600, 500))
# 需要给定每个图像的权重大小(简单来说:谁设定的数值越大其显示的程度越高),10为图像的亮度值
MI = cv2.addWeighted(M, 0.5, I, 0.5, 10)
cv2.imshow('MI', MI)
cv2.waitKey(100000)
cv2.destroyAllWindows()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/415961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【教程】MySQL数据库学习笔记(六)——数据查询语言DQL(持续更新)

写在前面: 如果文章对你有帮助,记得点赞关注加收藏一波,利于以后需要的时候复习,多谢支持! 【MySQL数据库学习】系列文章 第一章 《认识与环境搭建》 第二章 《数据类型》 第三章 《数据定义语言DDL》 第四章 《数据操…

华为云征文|华为云Flexus X实例docker部署srs6并调优,协议使用webrtc与rtmp

华为云征文|华为云Flexus X实例docker部署srs6并调优,协议使用webrtc与rtmp 什么是华为云Flexus X实例 华为云Flexus X实例云服务是新一代开箱即用、体验跃级、面向中小企业和开发者打造的高品价比云服务产品。Flexus云服务器X实例是新一代面向中小企业…

CRM系统为贷款中介行业插上科技的翅膀

CRM(客户关系管理)系统为贷款中介公司插上了科技的翅膀,极大提升了贷款中介企业的运营效率、客户管理能力和市场竞争力。鑫鹿贷款CRM系统基于互联网、大数据分析、人工智能、云计算等前沿技术,帮助贷款中介公司实现业务流程的自动…

注册安全分析报告:央视网

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

Android 11 (R)AMS Activity内部机制

一、AMS是如何被管理的 如我们在Android 11(R)启动流程中介绍的一样,AMS和ATMS是在SystemServer中被启动的 ActivityTaskManagerService atm mSystemServiceManager.startService(ActivityTaskManagerService.Lifecycle.class).getService(); mActivityManagerSe…

名城优企游学活动走进龙腾半导体:CRM助力构建营销服全流程体系

8月29日,由纷享销客主办的“数字中国 高效增长——名城优企游学系列活动之走进龙腾半导体”研讨会在西安市圆满落幕,来自业内众多领袖专家参与本次研讨会,深入分享交流半导体行业的数字化转型实践,探讨行业数字化、智能化转型之路…

Linux【3】文件目录进阶

目录 cd 回到家目录 在最近两次目录来回切花 相对路径:从当前位置开始,前面没有/ or ~ mkdir rm 不可恢复 删除目录 -f 有则删,无也不报错 ls通配符仍适用!【批量删除】 cd 回到家目录 cd cd ~ 在最近两次目录来回…

Python 数据分析— Pandas 基本操作(上)

文章目录 学习内容:一、Series 创建及操作二、DataFram 的创建与操作三、Pandas 的读写操作四、选择指定行列数据 学习内容: 一、Series 创建及操作 ** Series : Pandas 的一种数据结构形式,可理解为含有索引的一维数组。** **(…

【Altium Designer脚本开发】——PCB平面绕组线圈 V1.4

PCB平面绕组线圈工具用于生成平面电机线圈,应用场景可参考平面电机的书籍、CNKI论文或平面电机的视频。此工具运行环境在Altium Designer中,可用于Altium Designer全系列的版本中。 以下工具可以定制和试用 原理图文档处理工具 ➡️物料编码自动查找工具…

c++ 156函数

inline内联函数 #include<iostream> using namespace std;inline void printA() {int a 10;cout << "a:" << a << endl;}void main() {//printA();//c编译器会这样 把函数体机械地放到main函数里面{int a 10;cout << "a:"…

云计算之ECS

目录 一、ECS云服务器 1.1 ECS的构成 1.2 ECS的实例规格 1.3 镜像 1.4 磁盘 1.5 安全组 1.6 网络 1.7 产品结构 二、块存储介绍 2.1 快存储定义 2.2 块存储性能指标 2.3 快存储常用操作-云盘扩容 2.4 块存储常见问题 三、快照介绍 3.1 快照定义 3.2 快照常见问题…

tomcat架构设计分析,核心组件详解

提示&#xff1a;tomcat整体架构分析&#xff0c;tomcat核心组件详解、tomcat请求全流程、tomcat设计模式分析。责任链模式设计、tomcat设计详解、tomcat调优的前置文档 文章目录 前言一、相关概念1、tomcat的概念2、web应用部署的3种方式 二、tomcat的整体架构1、tomcat架构图…

家教管理系统设计与实现

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装家教管理系统软件来发挥其高效地信息处理的作用&#xff0c…

[论文笔记]RAFT: Adapting Language Model to Domain Specific RAG

引言 今天带来一篇结合RAG和微调的论文&#xff1a;RAFT: Adapting Language Model to Domain Specific RAG。 为了简单&#xff0c;下文中以翻译的口吻记录&#xff0c;比如替换"作者"为"我们"。 本文介绍了检索增强微调(Retrieval Augmented Fine Tunin…

Opencv中的直方图(4)局部直方图均衡技术函数createCLAHE()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 创建一个指向 cv::CLAHE 类的智能指针并初始化它。 函数原型 Ptr<CLAHE> cv::createCLAHE (double clipLimit 40.0,Size tileGridSize…

house of cat

文章目录 house of cat概述&#xff1a;_IO_wfile_jumps进入_IO_wfile_seekoffFSOP__malloc_assert 例题&#xff1a;思路&#xff1a;分析&#xff1a;利用&#xff1a; house of cat 概述&#xff1a; house of cat主要的摸底还是覆盖vtable指针&#xff0c;因为在glibc-2.2…

DrissionPage设置启动浏览器为edge

1.查看浏览器启动路径 在浏览器地址栏输入下面地址&#xff0c;拿到可执行文件的路径 。 edge://version/ 2.替换路径 打开DrissionPage._configs. chromium_options.py文件&#xff0c;找到def browser_path(self)这个函数&#xff0c;将返回内容替换为edge的启动路径&#x…

轿厢电梯-电动车检测数据集(真实电梯监控)

轿厢电动车检测数据集&#xff0c; 可做电梯乘客、电动车检测任务。 数据集由真实电梯监控图片&#xff08;大约四千&#xff09;、电动车网图、手机拍摄图片构成&#xff0c;总计14000张左右&#xff0c;其中近8000样本已标注。 注&#xff1a;文件夹后面数字为对应数据集样本…

论斜率优化dp

论斜率优化dp 1问题2暴力算法-线性dp3斜率优化线性dp4后记 1问题 如下图 看到这题&#xff0c;题面很复杂 其实可以转化为如下问题 有 n n n个任务&#xff0c;排成一个有序序列&#xff0c;我们要解决这些任务 总费用是每一个任务的完成时间乘以费用系数求和 每个任务之前…

紫金大数据平台架构之路(一)----大数据任务开发和调度平台架构设计

一、总体设计 初来公司时&#xff0c;公司还没有大数据&#xff0c;我是作为大数据架构师招入的&#xff0c;结合公司的线上和线下业务&#xff0c;制定了如下的大数据架构路线图。 二、大数据任务开发和调度平台架构设计 在设计完总体架构后&#xff0c;并且搭建完hadoop/ya…