使用傅里叶变换进行图像边缘检测

使用傅里叶变换进行图像边缘检测

今天我们介绍通过傅里叶变换求得图像的边缘

什么是傅立叶变换?

简单来说,傅里叶变换是将输入的信号分解成指定样式的构造块。例如,首先通过叠加具有不同频率的两个或更多个正弦函数而生成信号f(x),之后,仅查看f(x)的图像缺无法了解使用哪种或多少原始函数来生成f(x)。

这就是傅立叶变换最神奇的地方。将f(x)函数通过一个傅立叶变换器,我们就可以得到一个新的函数F(x)。F(x)的是最初生成f(x)函数的频率图。因此,通过查看F(x)我们就可以得到用于生成f(x)函数的原始频率。实际上,傅立叶变换可以揭示信号的重要特征,即其频率分量。

例如下图,该图中有f(x)函数合成时的两个不同频率的原函数和对应的傅里叶变换结果F(x)。

生成该图片的代码如下:

Fs = 150.0; #采样率
Ts = 1.0 / Fs; #采样间隔
t = np.arange(0,1,Ts)#时间向量
ff1 = 5; #信号频率1 
ff2 = 10; #信号2的频率
y = np.sin(2 * np.pi * ff1 * t)+ np.sin(3 * np.pi * ff2 * t)

从图中可以看出,由于原始函数是由两个不同频率的输入函数组成的,因此经过傅立叶变换后的相应频率图显示了两个不同频率的尖峰。

这是对傅立叶变换的比较简单的解释。它是一个非常复杂但非常有用的功能,在数学,物理和计算机视觉中得到了广泛的应用。

图像处理中的傅立叶变换

现在我们知道了傅里叶变换对信号处理的作用。它将输入信号从时域转换到频域。

但是它在图像处理中有什么用?它将输入图像从空间域转换为频域。换句话说,如果要在进行傅立叶变换后绘制图像,我们将看到的只是高频和低频的频谱图。高频偏向图像中心,而低频偏向周围。具体形式如下图所示。

上面对图像进行傅里叶变换的结果可以通过如下代码实现:

import numpy as np 
import cv2 from matplotlib 
import pyplot as plt 
img = cv2.imread('scenery.jpg', 0) 
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft) magnitude_spectrum = 20 *    np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1])) 
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray') 
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray')
plt.title('After FFT'), plt.xticks([]), plt.yticks([])

现在我们可以对图像进行FFT(快速傅里叶变换)变换了,并且可以使用转换后的结果进行多种操作:

  • 边缘检测—使用高通滤波器或带通滤波器

  • 降噪—使用低通滤波器

  • 图像模糊-使用低通滤镜

  • 特征提取(在某些情况下)-过滤器和其他一些openCV工具的混合搭配

HPF滤波器

如前所述,在经过FFT变换的图像中,在中心处发现低频,而在周围散布了高频,我们可以创建一个掩码数组,该掩码数组的中心是一个圆,其余全部为零。当将此掩码数组作用于原始图像时,所得图像将仅具有低频。由于高频对应于空间域中的边缘,这样就可以实现图像中的边缘检测。这个掩码数组就时HPF滤波器。

我们可以通过如下代码生成HPF滤波器

mask = np.ones((rows, cols, 2), np.uint8) 
r = 80 center = [crow, ccol] 
x, y = np.ogrid[:rows, :cols] 
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r

尽管可以选择使用多种类型的过滤器,但是主要使用三种类型的过滤器:

  • 高通滤波器(HPF)

  • 低通滤波器(LPF)

  • 带通滤波器(BPF)

使用openCV和NumPy的高通滤波器进行边缘检测

在计算机视觉领域中,检测图像边缘非常有用。一旦我们可以提取图像中的边缘,就可以将该知识用于特征提取或模式检测。

图像中的边缘通常由高频组成。因此,在对图像进行FFT(快速傅立叶变换)后,我们需要对FFT变换后的图像应用高通滤波器。该滤波器会阻止所有低频,仅允许高频通过。最后,我们对经过了滤波器的图像进行逆FFT,就会得到原始图像中一些明显的边缘特征。

接下来,我们使用汽车的图像进行此实验,这个过程的代码如下所示:

rows, cols = img.shape 
crow, ccol = int(rows / 2), int(cols / 2) # center 
# Circular HPF mask, center circle is 0, remaining all ones 
mask = np.ones((rows, cols, 2), np.uint8) 
r = 80 center = [crow, ccol] 
x, y = np.ogrid[:rows, :cols] 
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r 
# apply mask and inverse DFT 
fshift = dft_shift * mask 
fshift_mask_mag = 2000 * np.log(cv2.magnitude(fshift[:, :, 0], fshift[:, :, 1])) 
f_ishift = np.fft.ifftshift(fshift) 
img_back = cv2.idft(f_ishift) 
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])
plt.subplot(2, 2, 1), plt.imshow(img, cmap='gray') 
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 2), plt.imshow(magnitude_spectrum, cmap='gray') plt.title('After FFT'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 3), plt.imshow(fshift_mask_mag, cmap='gray') plt.title('FFT + Mask'), plt.xticks([]), plt.yticks([])
plt.subplot(2, 2, 4), plt.imshow(img_back, cmap='gray') plt.title('After FFT Inverse'), plt.xticks([]), plt.yticks([])
plt.show()

程序运行结果如下图所示:

可以看出,高通滤波器阻止了所有的低频信号,并且仅允许高频通过。由于边缘通常是由高频信号构成的,因此可以在最后的图像中找到原图像的边缘信息。

如果对傅里叶变换感兴趣,可以观看如下两个视频:

https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw

https://www.youtube.com/watch?time_continue=1&v=r18Gi8lSkfM

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/4179.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用户中心项目教程(四)---Vue脚手架完成前端初始化

目录 1.项目的创建 2.使用开发工具打开 3.项目运行方法 4.使用按钮组件 5.全局注册 6.如何进行组件的测试 7.使用组件的效果展示 8.关于这个vue项目内容的说明 1.项目的创建 这个前提你是你完成了我的教程&#xff08;三&#xff09;里面的相关配置&#xff0c;不然你可…

《自动驾驶与机器人中的SLAM技术》ch4:基于预积分和图优化的 GINS

前言&#xff1a;预积分图优化的结构 1 预积分的图优化顶点 这里使用 《自动驾驶与机器人中的SLAM技术》ch4&#xff1a;预积分学 中提到的散装的形式来实现预积分的顶点部分&#xff0c;所以每个状态被分为位姿&#xff08;&#xff09;、速度、陀螺零偏、加计零偏四种顶点&am…

二叉搜索树(TreeMapTreeSet)

文章目录 1.概念2.二叉搜索树的底层代码实现(1)首先构建二叉树(2)实现插入功能&#xff1b;(3)实现查找(4)删除&#xff08;重点&#xff09; 3.TreeMap 1.概念 TreeMap&TreeSet都是有序的集合都是基于二叉搜索树来实现的 二叉搜索树&#xff1a;是一种特殊的二叉树 若左子…

【QT用户登录与界面跳转】

【QT用户登录与界面跳转】 1.前言2. 项目设置3.设计登录界面3.1 login.pro参数3.2 界面设置3.2.1 登录界面3.2.2 串口主界面 4. 实现登录逻辑5.串口界面6.测试功能7.总结 1.前言 在Qt应用程序开发中&#xff0c;实现用户登录及界面跳转功能是构建交互式应用的重要步骤之一。下…

基于springboot的口腔管理平台

作者&#xff1a;学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等 文末获取“源码数据库万字文档PPT”&#xff0c;支持远程部署调试、运行安装。 项目包含&#xff1a; 完整源码数据库功能演示视频万字文档PPT 项目编码&#xff1…

4 AXI USER IP

前言 使用AXI Interface封装IP&#xff0c;并使用AXI Interface实现对IP内部寄存器进行读写实现控制LED的demo&#xff0c;这个demo是非常必要的&#xff0c;因为在前面的笔记中基本都需哟PS端与PL端就行通信互相交互&#xff0c;在PL端可以通过中断的形式来告知PS端一些事情&…

实力认证 | 海云安入选《信创安全产品及服务购买决策参考》

近日&#xff0c;国内知名安全调研机构GoUpSec发布了2024年中国网络安全行业《信创安全产品及服务购买决策参考》&#xff0c;报告从产品特点、产品优势、成功案例、安全策略等维度对各厂商信创安全产品及服务进行调研了解。 海云安凭借AI大模型技术在信创安全领域中的创新应用…

二、点灯基础实验

嵌入式基础实验第一个就是点灯&#xff0c;地位相当于编程界的hello world。 如下为LED原理图&#xff0c;要让相应LED发光&#xff0c;需要给I/O口设置输出引脚&#xff0c;低电平&#xff0c;二极管才会导通 2.1 打开初始工程&#xff0c;编写代码 以下会实现BLINKY常亮&…

Amazon MSK 开启 Public 访问 SASL 配置的方法

1. 开启 MSK Public 1.1 配置 MSK 参数 进入 MSK 控制台页面&#xff0c;点击左侧菜单 Cluster configuration。选择已有配置&#xff0c;或者创建新配置。在配置中添加参数 allow.everyone.if.no.acl.foundfalse修改集群配置&#xff0c;选择到新添加的配置。 1.2 开启 Pu…

大模型UI:Gradio全解11——Chatbot:融合大模型的聊天机器人(4)

大模型UI&#xff1a;Gradio全解11——Chatbot&#xff1a;融合大模型的聊天机器人&#xff08;4&#xff09; 前言本篇摘要11. Chatbot&#xff1a;融合大模型的多模态聊天机器人11.4 使用Blocks创建自定义聊天机器人11.4.1 简单聊天机器人演示11.4.2 立即响应和流式传输11.4.…

流量分析复现(第十八届信息安全大赛 第二届长城杯 )

zeroshell_1 题目&#xff1a;从数据包中找出攻击者利用漏洞开展攻击的会话&#xff08;攻击者执行了一条命令&#xff09;&#xff0c;写出该会话中设置的flag, 结果提交形式&#xff1a;flag{xxxxxxxxx} 这里大致的思路还是先看看&#xff0c;流量协议的分级 主要还是以TCP流…

ImportError: /lib/x86_64-linux-gnu/libc.so.6: version `GLIBC_2.32‘ not found

问题描述&#xff1a;安装MMYOLO或者MMROTATE时&#xff0c;出现的问题&#xff1a; (base) rootautodl-container-78fc438fda-4132d99a:~/autodl-tmp/MMROTATE_PROJECT/mmrotate-1.x# python demo/image_demo.py demo/demo.jpg oriented-rcnn-le90_r50_fpn_1x_dota.py orient…

2024年博客之星年度评选—创作影响力评审入围名单公布

2024年博客之星活动地址https://www.csdn.net/blogstar2024 TOP 300 榜单排名 用户昵称博客主页 身份 认证 评分 原创 博文 评分 平均 质量分评分 互动数据评分 总分排名三掌柜666三掌柜666-CSDN博客1001002001005001wkd_007wkd_007-CSDN博客1001002001005002栗筝ihttps:/…

25/1/15 嵌入式笔记 初学STM32F108

GPIO初始化函数 GPIO_Ini&#xff1a;初始化GPIO引脚的模式&#xff0c;速度和引脚号 GPIO_Init(GPIOA, &GPIO_InitStruct); // 初始化GPIOA的引脚0 GPIO输出控制函数 GPIO_SetBits&#xff1a;将指定的GPIO引脚设置为高电平 GPIO_SetBits(GPIOA, GPIO_Pin_0); // 将GPIO…

新星杯-ESP32智能硬件开发--ESP32的I/O组成-系统中断矩阵

本博文内容导读&#x1f4d5;&#x1f389;&#x1f525; ESP32开发板的中断矩阵、功能描述与实现、相关API和示例程序进行介绍 ESP32中断矩阵将任一外部中断源单独分配到每个CPU的任一外部中断上&#xff0c;提供了强大的灵活性&#xff0c;能适应不同的应用需求。 ESP32中断主…

游戏引擎学习第81天

仓库:https://gitee.com/mrxiao_com/2d_game_2 或许我们应该尝试在地面上添加一些绘图 在这段时间的工作中&#xff0c;讨论了如何改进地面渲染的问题。虽然之前并没有专注于渲染部分&#xff0c;因为当时主要的工作重心不在这里&#xff0c;但在实现过程中&#xff0c;发现地…

【2024年华为OD机试】(C卷,100分)- 悄悄话 (Java JS PythonC/C++)

一、问题描述 题目描述 给定一个二叉树&#xff0c;每个节点上站一个人&#xff0c;节点数字表示父节点到该节点传递悄悄话需要花费的时间。 初始时&#xff0c;根节点所在位置的人有一个悄悄话想要传递给其他人&#xff0c;求二叉树所有节点上的人都接收到悄悄话花费的时间…

【Spring Boot】掌握 Spring 事务:隔离级别与传播机制解读与应用

前言 &#x1f31f;&#x1f31f;本期讲解关于spring 事务传播机制介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话…

【陕西省乡镇界】面图层shp格式arcgis数据乡镇名称和编码2020年wgs84坐标无偏移内容测评

标题中的“陕西省乡镇界面图层shp格式arcgis数据乡镇名称和编码2020年wgs84坐标无偏移.zip”表明这是一个地理信息系统&#xff08;GIS&#xff09;的数据集&#xff0c;专为陕西省的乡镇区域设计。该数据集以Shapefile&#xff08;shp&#xff09;格式提供&#xff0c;是GIS领…

国家统计局湖北调查总队副总队长张小青一行调研珈和科技农业遥感调查智能化算法

1月15日上午&#xff0c;国家统计局湖北调查总队党组成员、副总队长张小青一行莅临珈和科技开展调研。调研期间&#xff0c;张小青一行实地了解了珈和科技在自动化作物分布提取技术领域的最新成果&#xff0c;深入探讨了作物自动化处理模型在农业调查上应用的创新价值及优化方向…