艾体宝洞察丨透过语义缓存,实现更快、更智能的LLM应用程序

传统的缓存只存储数据而不考虑上下文,语义缓存则不同,它能理解用户查询背后的含义。它使数据访问更快,系统响应更智能,对 GenAI 应用程序至关重要。

什么是语义缓存?

语义缓存解释并存储用户查询的语义,使系统能够根据意图而不仅仅是字面匹配来检索信息。这种方法可以实现更细致入微的数据交互,缓存所显示的响应比传统缓存更相关,也比大型语言模型(LLM)的典型响应更快。

把语义缓存想象成精明的图书管理员。他们不仅知道每本书在哪里,还了解每个请求的上下文。他们不会纯粹按照书名分发书籍,而是会考虑读者的意图、过去的阅读情况以及与查询最相关的内容。就像这位图书管理员一样,语义缓存能动态检索并提供与当前查询最相关的数据,确保每次响应都符合用户的需求。

语义缓存与传统缓存的比较

传统缓存侧重于临时存储数据,以加快频繁访问信息的加载速度,但却忽略了被查询数据的含义和上下文。这就是语义缓存的用武之地。它使用智能层来把握每次查询的意图,确保只存储和检索最相关的数据。语义缓存使用人工智能嵌入模型为数据段添加意义,使检索更快、更相关。这种方法减少了不必要的数据处理,提高了系统效率。

语义缓存系统的关键组成部分

1、嵌入模型

语义缓存系统使用嵌入。这些是数据的矢量表示,有助于评估不同查询和存储响应之间的相似性。

2、矢量数据库

该组件以结构化的方式存储嵌入数据。它有助于根据语义相似性进行快速检索,而不是使用精确匹配。

3、缓存

缓存数据的中央存储空间,其中存储了响应及其语义,以便将来使用和快速检索。

4、矢量搜索

语义缓存的一个关键过程,这一步骤包括评估传入查询与缓存中现有数据之间的相似性,以快速决定最佳响应。

这些组件通过更快、更能感知上下文的响应来提高应用程序的性能。将这些元素集成到 LLM 中,可改变模型与大型数据集的交互方式,使语义缓存成为现代人工智能系统的重要组成部分。

语义缓存的影响:快速开发 LLM 应用程序

语义缓存是LLM驱动的应用程序的可靠选择。LLM处理的查询范围广泛,需要快速、准确和上下文感知的响应。语义缓存可以有效地管理数据、减少计算需求并提供更快的响应时间,从而提高性能。

使用语义缓存检索常见问题就是一个例子。在这个聊天机器人示例中,用户询问有关国税局申报文件等内部源文件的问题,得到的答复速度是原来的 15 倍。

由于上下文感知数据是重中之重,语义缓存有助于人工智能系统提供更快、更相关的回复。这对于从自动客户服务到复杂的研究分析等各种应用程序来说都至关重要。

将语义缓存与 LLM 相结合

在使用 LLM 的应用程序中,vector search在语义缓存框架中发挥着至关重要的作用。它能让 LLM 快速筛选海量数据,通过比较用户查询和缓存响应的向量找到最相关的信息。

提高性能和效率–使用案例

语义缓存为人工智能应用程序带来了巨大的性能提升。下面是几个展示其强大功能的使用案例:

1、自动化客户支持

在客户服务中,语义缓存可快速检索常见问题的答案。现在,交互是实时的,响应是上下文感知的,从而提高了用户满意度。

2、实时语言翻译

在语言翻译应用程序中,语义缓存有助于存储常用短语及其翻译。缓存数据的重复使用可加快翻译过程并减少错误,从而提升整体用户体验。

3、内容推荐系统

在推荐引擎中,语义缓存可将用户查询与之前查询或浏览过的内容更快地匹配起来。这不仅能加快推荐过程,还能确保内容符合用户偏好。

实施语义缓存的最佳做法

(一)评估你的基础设施

有效实施语义缓存首先要选择正确的基础设施。一些关键的考虑因素包括:

1、数据存储解决方案

选择可扩展的存储解决方案,如能处理大量数据并支持快速数据检索的 Redis。这些系统善于管理语义缓存所需的复杂数据结构。

2、缓存策略

根据应用程序的需求,在内存缓存和持久缓存之间做出选择。内存缓存的访问速度更快,但成本较高,而且数据量有限。持久缓存虽然速度较慢,但可以处理较大的数据集,并确保数据的持久性。

(二)设计可扩展性和性能

为确保语义缓存系统能够处理不断增加的负载并保持高性能,请考虑以下策略:

1、负载平衡

实施负载平衡,在整个系统中有效地分配查询,防止系统的任何单一部分成为瓶颈。

2、优化数据检索

使用高效的数据检索算法,最大限度地减少延迟。这包括优化矢量和缓存存储中的数据索引和查询方式。

(三)确保准确性和一致性

保持响应的准确性和一致性至关重要,尤其是在数据和用户交互不断变化的动态环境中。

1、相似性阈值

小心管理相似性阈值,在响应的准确性和缓存响应的广度之间取得平衡。过于严格的阈值可能会限制缓存的实用性,而过于宽松的阈值则可能会降低响应的相关性。

2、一致性策略

实施策略,确保缓存数据与源数据保持一致。这可能涉及定期更新和检查,以使缓存响应与当前数据和查询趋势保持一致。

(四)实施语义缓存

要将这些做法整合到一个连贯的实施策略中,可以遵循以下步骤:

第 1 步:评估当前系统的功能,并确定对可扩展性、响应时间和成本改进的需求。

第 2 步:根据系统需求和预算选择合适的缓存和存储技术。

第 3 步:配置语义缓存层,重点关注 LLM 封装器、矢量数据库 和相似性搜索等关键组件。

第 4 步:持续监控和调整相似性阈值和缓存策略,以适应新数据和不断变化的用户行为模式。

通过遵循这些最佳实践,企业可以充分发挥语义缓存的潜力,从而提高性能、改善用户体验并提高运营效率。

应用程序的新时代

语义缓存代表着一个巨大的飞跃,它能提升 LLM 的性能,使人工智能应用程序全面提速。通过智能管理数据的存储、访问和重用方式,语义缓存降低了计算需求,实现了实时响应时间,并确保了输出的准确性和上下文感知能力。在数据密集的环境中,快速和相关的响应就是一切。

展望未来,语义缓存的作用将变得更加重要。查询变得越来越复杂,对实时数据处理的需求也越来越大,这就需要更复杂的缓存策略。GenAI 处理和后处理变得越来越复杂和耗时,需要加快响应的策略。随着模型变得越来越强大,使用最佳模型的计算成本越来越高,企业只会继续优化其支出。语义缓存可以迎头应对这些挑战,使数据检索更快、更智能。

使用更智能的工具、获得更快的结果。

要想最大限度地利用语义缓存,你需要功能强大、用途广泛的工具。Redis是世界上速度最快的数据平台,它能将你的语义缓存策略带入实时状态。凭借高性能数据处理和对多样化数据结构的支持,Redis 可优化响应速度和效率,使您的 GenAI 应用程序更加快速。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/418171.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MQTT broker搭建并用SSL加密

系统为centos,基于emqx搭建broker,流程参考官方。 安装好后,用ssl加密。 进入/etc/emqx/certs,可以看到 分别为 cacert.pem CA 文件cert.pem 服务端证书key.pem 服务端keyclient-cert.pem 客户端证书client-key.pem 客户端key 编辑emqx配…

云计算之大数据(下)

目录 一、Hologres 1.1 产品定义 1.2 产品架构 1.3 Hologres基本概念 1.4 最佳实践 - Hologres分区表 1.5 最佳实践 - 分区字段设置 1.6 最佳实践 - 设置字段类型 1.7 最佳实践 - 存储属性设置 1.8 最佳实践 - 分布键设置 1.9 最佳实践 - 聚簇键设置 1.10 最佳实践 -…

12. GIS地图制图工程师岗位职责、技术要求和常见面试题

本系列文章目录: 1. GIS开发工程师岗位职责、技术要求和常见面试题 2. GIS数据工程师岗位职责、技术要求和常见面试题 3. GIS后端工程师岗位职责、技术要求和常见面试题 4. GIS前端工程师岗位职责、技术要求和常见面试题 5. GIS工程师岗位职责、技术要求和常见面试…

多线程 | ThreadLocal源码分析

文章目录 1. ThreadLocal解决了什么问题数据隔离避免参数传递资源管理 2. ThreadLocal和Synchronized3. ThreadLocal核心核心特性常见方法使用场景注意事项 4. ThreadLocal如何实现线程隔离的?(重点)ThreadLocal 的自动清理与内存泄漏问题阿里…

浙大数据结构:02-线性结构3 Reversing Linked List

数据结构MOOC PTA习题 这道题也是相当费事,不过比上一个题好一些,这里我使用了C的STL库,使得代码量大幅减少。 题干机翻: 1、条件准备 这里我准备采用map来存地址和值,因为map的查找效率也是不错的 数组arr是存链…

GPU环境配置:1.CUDA、Anaconda、Pytorch

一、查看显卡适配CUDA型号 查看自己电脑的显卡版本: 在 Windows 设置中查看显卡型号:使用 Windows I 快捷键打开「设置」,依次点击「系统」-「屏幕」和「高级显示器设置」,在「显示器 1」旁边就可以看到显卡名称。 右键点菜单图标…

43. 1 ~ n 整数中 1 出现的次数【难】

comments: true difficulty: 中等 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9843.%201%EF%BD%9En%E6%95%B4%E6%95%B0%E4%B8%AD1%E5%87%BA%E7%8E%B0%E7%9A%84%E6%AC%A1%E6%95%B0/README.md 面试题 43. 1 ~ n 整数中 1 …

前端 Vue3 项目开发—— ESLint prettier 配置代码风格

ESLint & prettier 介绍 如果你用的是 pnpm create vue 来创建项目,那么创建项目时就会让你选择是否添加 ESLint 和 prettier 我们在上一篇博客中详细介绍过 ESLint,可以说上一篇博客是这篇博客的先修知识,所以各位小伙伴们请先去看看我…

LiveQing视频点播流媒体RTMP推流服务功能-支持大疆等无人机RTMP推流支持OBS推流一步一步搭建RTMP视频流媒体服务示例

LiveQing支持大疆等无人机RTMP推流支持OBS推流一步一步搭建RTMP视频流媒体服务示例 1、流媒体服务搭建2、推流工具准备3、创建鉴权直播间4、获取推流地址5、配置OBS推流6、推流及播放7、获取播放地址7.1 页面查看视频源地址7.2 接口查询 8、相关问题8.1、大疆无人机推流花屏 9、…

【每日刷题】Day111

【每日刷题】Day111 🥕个人主页:开敲🍉 🔥所属专栏:每日刷题🍍 🌼文章目录🌼 1. LCR 047. 二叉树剪枝 - 力扣(LeetCode) 2. LCR 049. 求根节点到叶节点数字…

怎么在mathtype中打空格 MathType空格键不能用

MathType是一款数学公式编辑器,可以帮助用户创建复杂的数学公式和方程式。它提供了一个用户友好的界面,使得编辑和排版数学公式变得更加容易和高效。用户可以直接在其界面中输入公式,也可以将已有的公式从其他文档中复制粘贴过来进行编辑。在…

【STM32CubeMX】MPU6050移植DMP流程

原本是想要自己的模拟I2C库,来组合时选块,对接上DMP所需接口,可是一直卡在初始化,后面改成STM32F4的硬件I2C,也是很便捷的对接上接口了。此外在也参考了网上的移植资料与记录。本文也作为学习笔记,记录下过…

Java项目: 基于SpringBoot+mybatis+maven+mysql教师工作量管理系统(含源码+数据库+毕业论文)

一、项目简介 本项目是一套基于SpringBootmybatismavenmysql教师工作量管理系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观…

软件测试 - 性能测试 (概念)(并发数、吞吐量、响应时间、TPS、QPS、基准测试、并发测试、负载测试、压力测试、稳定性测试)

一、性能测试 目标:能够对个人编写的项目进行接口的性能测试。 一般是功能测试完成之后,最后做性能测试。性能测试是一个很大的范围,在学习过程中很难直观感受到性能。 以购物软件为例: 1)购物过程中⻚⾯突然⽆法打开…

JRebel and XRebel离线安装

近期,使用JRebel and XRebel,发现总是安装不上,可能是网络的原因吧。所以就使用离线方式进行安装。 JRebel 是一款用于 Java 开发的生产力工具。它的主要功能是加速开发周期,通过在不重启 JVM 的情况下即时加载代码变更。这样&…

在VB.net中,如何把20240906转化成日期格式

标题 vb.net中,如何把20240906转化成日期格式 正文 在 VB.NET 中,将一个数字字符串(如 "20240906")转换为日期格式,你可以使用 DateTime.Parse 或 DateTime.TryParse 方法。这些方法可以将符合日期格式的字符…

Github 2024-09-07Rust开源项目日报Top10

根据Github Trendings的统计,今日(2024-09-07统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10CUE项目1Python项目1Go项目1Polars: Rust中的DataFrame接口和OLAP查询引擎 创建周期:1354 天开发语言:Rust, Python协议类型:MIT …

【STM32开发】GPIO最全解析及应用实例

目录 【1】GPIO概述 GPIO的基本概念 GPIO的应用 【2】GPIO功能描述 1.IO功能框图 2.知识补充 3.功能详述 浮空输入 上拉输入 下拉输入 模拟输入 推挽输出 开漏输出 复用开漏输出和复用推挽输出 【3】GPIO常用寄存器 相关寄存器介绍 4个32位配置寄存器 2个32位数据寄存器 1个32位…

机器学习如何用于音频分析?

机器学习如何用于音频分析? 一、说明 近十年来,机器学习越来越受欢迎。事实上,它被用于医疗保健、农业和制造业等众多行业。随着技术和计算能力的进步,机器学习有很多潜在的应用正在被创造出来。由于数据以多种格式大量可用&…

JVM系列(十) -垃圾收集器介绍

一、摘要 在之前的几篇文章中,我们介绍了 JVM 内部布局、对象的创建过程、运行期的相关优化手段以及垃圾对象的回收算法等相关知识。 今天通过这篇文章,结合之前的知识,我们一起来了解一下 JVM 中的垃圾收集器。 二、垃圾收集器 如果说收集算法是内存回收的方法论,那么…