开源还是封闭?人工智能的两难选择

这篇文章于 2024 年 7 月 29 日首次出现在 The New Stack 上。人工智能正处于软件行业的完美风暴中,现在马克·扎克伯格 (Mark Zuckerberg) 正在呼吁开源 AI。

关于如何控制 AI 的三个强大观点正在发生碰撞:

1 . 所有 AI 都应该是开源的,以实现共享和透明。

2 . 保持 AI 闭源,并允许大型科技公司控制它。

3 . 制定 AI 使用法规。

有几个事实使这场辩论变得棘手。首先,如果你有模型的源代码,你对模型的行为方式完全一无所知。AI 的开放性需要的远不止提供源代码。其次,AI 有很多不同的风格,可用于解决广泛的问题。从用于欺诈检测和定向广告的传统 AI 到用于创建聊天机器人的生成式 AI,这些聊天机器人从表面上产生类似人类的结果,使我们越来越接近人工生成智能 (AGI) 的最终(和可怕)目标。最后,上面列出的控制 AI 的想法在改进软件方面都有良好的记录。

在本文中,我将讨论:

  • 开源的真正本质以及为什么该行业必须为 AI 模型重新定义它。

  • 理想主义者的常见论点和逻辑缺陷,他们高度关注单一用例。

  • 创新者的权利和公众的权利。

  • 关于在正确的模型上使用适当控件的想法。

了解不同的观点

在深入研究之前,让我们更详细地讨论上面列出的不同观点。

观点 #1 – 所有 AI 都应该是开源的,以实现共享和透明: 这来自于 AI 对透明度的推动。 开源是共享和改进软件的一种行之有效的方法。当用于传统软件时,它提供完全透明。(在本文中,我将使用术语 conventional software 来指代与 AI 无关的软件。例如,操作系统、服务、可重用库或完整应用程序。开源软件推动了软件行业的突飞猛进。

观点 #2 – 保持 AI 闭源并允许大型科技公司控制它: 闭源或专有软件是指发明可以保密,远离竞争对手,以实现经济利益最大化的想法。对于开源理想主义者来说,这听起来完全是邪恶的;然而,它更像是一种哲学选择,而不是存在于善与恶的光谱上的选择。大多数软件都是专有的,这本身并不是坏事 - 它是竞争和健康生态系统的基础。选择闭源道路是任何创造新事物的创新者的基本权利。问题变成了,如果你在没有透明度的情况下运营,那么负责任的 AI 有什么保证呢?

观点 #3 – 制定 AI 使用法规: 这来自推动监管的立法者和民选官员。基本思想是,如果公共职能或技术如此强大,以至于不良行为者或不负责任的管理可能会伤害公众,那么应该任命一个政府机构来制定控制措施并执行这些控制措施。有一种观点认为,人工智能领域的现任和现任领导者也希望进行监管,但原因不那么纯粹——他们想冻结由他们主导的竞争环境。我们将主要关注公共产品领域。

开源的真正本质

在生成式 AI 出现之前,在数据中心运行的大多数软件都是传统软件。如果您有传统软件的源代码,则可以准确确定它的作用。精通适当编程语言的工程师可以查看代码并确定其逻辑。您甚至可以修改它并更改其行为。开源(或开源代码)是另一种说法 - 我将提供确定行为和改变行为所需的一切。简而言之,开源软件的真正本质是提供了解软件行为并对其进行更改所需的一切。现在,使用 AI 模型,如果你有模型的源代码,你对模型的行为方式完全一无所知。要使模型完全开放,您需要训练数据、模型的源代码、训练期间使用的超参数,当然还需要训练后的模型本身,它由存储模型知识的数十亿(很快是数万亿)参数组成,也称为参数内存。现在,一些组织只提供模型,将其他所有内容留给自己,并声称该模型是“开源的”。这是一种被称为 “公开清洗” 的做法,通常被开放和闭源社区视为不诚实。我希望看到一个新术语用于部分共享的 AI 模型。也许是 “partially open model” 或 “model from an open washing company”。当涉及到完全共享的模型时,还有最后一个问题。假设一个组织想要做正确的事情并分享有关模型的所有内容 - 训练数据、源代码、超参数和训练的模型。好吧,除非您对其进行广泛测试,否则您仍然无法确定它的具体行为。确定行为的参数内存不是人类可读的。同样,该行业需要一个不同的术语来描述完全开放的模型。与“开源”不同的术语,“开源”只应用于非 AI 软件,因为模型的源代码无助于确定模型的行为。也许是“开放模式”。

常见参数

让我们看看你在互联网上找到的一些常见论点,这些论点只支持使用前面描述的其中一种观点。这些人是他们观点的热情捍卫者,但这种热情可能会蒙蔽判断力。

论点: (封闭的 AI 支持者声称,大型科技公司有办法防范潜在的危险和滥用。因此,AI 应该保持私有,远离开源社区。

反驳: 大型科技公司确实有办法防范潜在的滥用行为,但这并不意味着他们会明智地这样做,甚至根本不这样做。此外,这不是他们的主要目标。他们的主要目标是为股东赚钱 - 这永远是优先的。

论点: 那些认为 AI 可能会对人类构成威胁的人喜欢问:“你会开源曼哈顿计划吗?

反驳: 这显然是治理的论点。然而,这是一个不公平和不正确的类比。曼哈顿计划的目的是在战时通过使用放射性材料产生核聚变来制造炸弹。核聚变不是一种可以应用于不同任务的通用技术。你可以制造炸弹,也可以发电——就是这样。成分和结果对公众来说非常危险,因此应监管所有方面。AI 则大不相同。如上所述,它有不同的口味和不同的风险。

论点: 开源 AI 的支持者表示,开源促进了科学的共享,提供了透明度,并且是防止少数人垄断强大技术的一种手段。

反驳: 这在很大程度上是正确的,但并不完全正确。开源确实提供共享。对于 AI 模型,它只会提供一些透明度。最后,“开放模式”是否会阻止少数人垄断他们的权力,还有待商榷。要大规模运行像 ChatGPT 这样的模型,您需要的计算能力只有少数公司能够获得。

多数人的需求超过了少数人的需求

在《星际迷航 II:可汗之怒》中,斯波克死于辐射中毒。斯波克意识到必须修理飞船的主引擎以方便逃生,但机舱被致命的辐射淹没。尽管存在危险,斯波克还是进入了充满辐射的房间进行必要的维修。他成功地恢复了曲速驱动器,使企业号能够到达安全距离。不幸的是,瓦肯人不能免疫辐射。他对柯克船长的临终遗言解释了他行动背后的逻辑,“许多人的需求超过了少数人或一个人的需求。这是完全合理的逻辑,它必须用于控制 AI。有些型号会对公众构成风险。对于这些模式,公众的需求超过了创新者的权利。

所有 AI 都应该开源吗?

我们现在准备将所有内容联系在一起并回答本文标题的问题。首先,让我们回顾一下到目前为止建立的公理:

  • 开源应该仍然是一种选择。

  • 开放模型不如开源的非 AI 软件透明。

  • Close Source 是创新者的权利。

  • 无法保证大型科技公司会正确控制他们的 AI。

  • 公众的需求必须优先于所有其他需求。

上面的 5 个项目符号代表了我试图阐明的有关开源、闭源和法规的所有内容。如果你相信它们是真的,那么“所有 AI 都应该开源吗”这个问题的答案是否定的,因为它不会控制 AI,闭源也不会。此外,在一个公平的世界中,开源和开放模型应该仍然是一种选择,而关闭源代码应该仍然是一种权利。我们可以更进一步,讨论整个行业可以采取哪些行动来有效控制 AI:

  • 确定对公众构成风险的模型类型。由于控制信息(聊天机器人)或危险资源(自动驾驶汽车)而具有高风险的模型应该受到监管。

  • 应鼓励组织将其模型作为完全开放的模型共享。开源社区需要加紧行动,防止或标记仅部分共享的模型。开源社区还应该将可用于对模型进行评级的测试放在一起。

  • 如果封闭模型不会对公众构成风险,则仍应允许使用。大型科技公司应该加紧开发自己的一套控制措施和测试,并为其提供资金和共享。也许这是大型科技公司与开源社区密切合作解决常见问题的机会。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/419431.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MiniGPT-3D, 首个高效的3D点云大语言模型,仅需一张RTX3090显卡,训练一天时间,已开源

项目主页:https://tangyuan96.github.io/minigpt_3d_project_page/ 代码:https://github.com/TangYuan96/MiniGPT-3D 论文:https://arxiv.org/pdf/2405.01413 MiniGPT-3D在多个任务上取得了SoTA,被ACM MM2024接收,只拥…

【软件设计师真题】下午题第一大题---数据流图设计

解答数据流图的题目关键在于细心。 考试时一定要仔细阅读题目说明和给出的流程图。另外,解题时要懂得将说明和流程图进行对照,将父图和子图进行对照,切忌按照常识来猜测。同时应按照一定顺序考虑问题,以防遗漏,比如可以…

Einsum(Einstein summation convention)

Einsum(Einstein summation convention) 笔记来源: Permute和Reshape嫌麻烦?einsum来帮忙! The Einstein summation convention is a notational shorthand used in tensor calculus, particularly in the fields of …

[数据集][目标检测]西红柿缺陷检测数据集VOC+YOLO格式17318张3类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):17318 标注数量(xml文件个数):17318 标注数量(txt文件个数):17318 标…

张飞硬件11~19-电容篇笔记

电容作用 作为源,对后级电路提供能量,对源进行充电。简单讲就是放电和充电。在电路设计中,源往往与负载相隔很远,增加电容就可以起到稳定作用。电容两端的电压不能激变,增加电容可以稳定电压。 电容可以类比为水坝&a…

(javaweb)mysql---DDL

一.数据模型,数据库操作 1.二维表:有行有列 2. 3.客户端连接数据库,发送sql语句给DBMS(数据库管理系统),DBMS创建--以文件夹显示 二.表结构操作--创建 database和schema含义一样。 这样就显示出了之前的内容…

系统编程--线程

这里写目录标题 线程概念什么是线程简介图解 内核原理图解 线程共享资源与非共享资源共享资源非共享资源 线程优缺点 线程控制原语pthread_self、pthread_create简介代码总结 循环创建多个子线程错误代码 线程间全局变量共享pthread_exit简介代码 pthread_join(回收…

传统CV算法——基于Sift算法实现特征点检测

图像尺度空间 在一定的范围内,无论物体是大还是小,人眼都可以分辨出来。然而,计算机要具备相同的能力却很难。因此,为了让机器能够对物体在不同尺度下有一个统一的认知,就需要考虑图像在不同尺度下所存在的特点。这就…

Infiniband网络架构的技术与性能分析

Infiniband格局寡头,性能占优 这篇文章探讨了网络交换机的性能优势,以及如何通过扩大模型参数量来提高语言模型的生成和预测能力。然而,计算约束对这种正向关系产生了重要影响,导致在相同的计算约束下,总存在最佳的模型…

Linux网络编程IO管理

网络 IO 涉及到两个系统对象,一个是用户空间调用 IO 的进程或者线程,一个是内核空间的内核系统,比如发生 IO 操作 read 时,它会经历两个阶段: 等待内核协议栈的数据准备就绪;将内核中的数据拷贝到用户态的…

随机森林Random Forest(RF)回归预测-MATLAB代码实现

一、随机森林RF(代码获取:底部公众号) 随机森林(Random Forest,RF)是一种机器学习方法,常用于回归预测和分类任务。它通过构建多个决策树,并通过组合它们的预测结果来进行回归预测。…

时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型

时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型 文章目录 一、基本原理1. 问题定义2. 数据准备3. SVM 模型构建4. 粒子群优化(PSO)5. 优化与模型训练6. 模型评估与预测7. 流程总结8. MATLAB 实现概述 二、…

浅谈人工智能之python调用通义千问API

浅谈人工智能之python调用通义千问API API-KEY建立 第一步:我们登录阿里云百炼 第二步:点击界面上查看我的API-KEY 第三步:在跳出来的界面中,点击创建API-KEY 第四步:在跳出来的界面中,在描述中输入“t…

算法——支持向量机(support vector machines,SVM)

简介:个人学习分享,如有错误,欢迎批评指正 支持向量机(Support Vector Machine, SVM)是一种监督学习算法,广泛用于分类任务,也可以用于回归和异常检测等问题。SVM的核心思想是通过在特征空间中找…

Unity【Colliders碰撞器】和【Rigibody刚体】的应用——小球反弹效果

目录 Collider 2D 定义: 类型: Rigidbody 2D 定义: 属性和行为: 运动控制: 碰撞检测: 结合使用 实用检测 延伸拓展 1、在Unity中优化Collider 2D和Rigidbody 2D的性能 2、Unity中Collider 2D…

2024/9/8周报

文章目录 摘要Abstract数据挖掘数据挖掘的目标数据挖掘的过程数据挖掘的技术应用领域工具与平台代码示例 总结 摘要 智慧水务项目中,需要对采集的总氮、氨氮、化学需氧量、硝态氮、总磷、硝态氮等数据进行数据处理与挖掘,因此本周对数据挖掘相关内容进行…

CommonCollections1

CommonCollections1 poc展示 这是一段POC,运行后会弹出一个计算器。 import org.apache.commons.collections.*; import org.apache.commons.collections.functors.ChainedTransformer; import org.apache.commons.collections.functors.ConstantTransformer; im…

C#使用MQTT(二):MQTT客户端

上一篇我们初步设计了MQTT服务端 C#使用MQTT(一):MQTT服务端-CSDN博客 这里我们设计客户端MQTT Client,接上一篇 新建Windows窗体FormMqttClient 窗体FormMqttClient设计如图: 窗体FormMqttClient设计器相关代码如下 文件FormMqttClient.Designer.cs namespace…

uni-app--》打造个性化壁纸预览应用平台(四)完结篇

🏙️作者简介:大家好,我是亦世凡华、渴望知识储备自己的一名前端工程师 🌄个人主页:亦世凡华、 🌆系列专栏:uni-app 🌇座右铭:人生亦可燃烧,亦可腐败&#xf…

论文写作神器!分享5款AI论文写作常用软件推荐

在当今学术研究和写作领域,AI论文写作工具的出现极大地提高了写作效率和质量。这些工具不仅能够帮助研究人员快速生成论文草稿,还能进行内容优化、查重和排版等操作。以下是五款目前最好用的AI论文写作软件推荐: 1. 千笔-AIPassPaper 千笔-…