【深度学习】【目标检测】【OnnxRuntime】【C++】YOLOV5模型部署
提示:博主取舍了很多大佬的博文并亲测有效,分享笔记邀大家共同学习讨论
文章目录
- 【深度学习】【目标检测】【OnnxRuntime】【C++】YOLOV5模型部署
- 前言
- Windows平台搭建依赖环境
- 模型转换--pytorch转onnx
- ONNXRuntime推理代码
- 完整推理代码
- 总结
前言
本期将讲解深度学习目标检查网络YOLOV5模型的部署,对于该算法的基础知识,可以参考其他博主博文。
读者可以通过学习【OnnxRuntime部署】系列学习文章目录的C++篇* 的内容,系统的学习OnnxRuntime部署不同任务的onnx模型。
Windows平台搭建依赖环境
在【入门基础篇】中详细的介绍了onnxruntime环境的搭建以及ONNXRuntime推理核心流程代码,不再重复赘述。
模型转换–pytorch转onnx
本博文将通过Ultralytics–YOLOv5算法的口罩检测项目【参考博文:Windows11下YOLOV5口罩目标检测】,简要介绍YOLOV5模型部署。
在博文Windows11下YOLOV5口罩目标检测项目中已经通过以下命令导出了onnx模型:
python export.py --weights runs/train/exp/weights/best.pt --include onnx
【yolov5s-mask.onnx百度云链接,提取码:15v2 】直接下载使用即可。
ONNXRuntime推理代码
利用可视化工具查看onnx模型结构: 通过可视化Netron工具【在线工具】,展示模型的层次结构、参数细节等。
将onnx模型上传到在线Netron可视化工具:
简单说明下输出代表的含义::1代表batchsize;25200代表检测框的个数;7代表框的详细信息:即框中心点xy+框宽高hw+框置信度conf+框分类个数(这里是2)。
完整推理代码
需要配置mask_classes.txt文件存储人脸的分类标签,并将其放置到工程目录下(推荐)。
without-mask
mask
这里需要将yolov5s-mask.onnx放置到工程目录下(推荐),并且将以下推理代码拷贝到新建的cpp文件中,并执行查看结果。
#include "onnxruntime_cxx_api.h"
#include "cpu_provider_factory.h"
#include <opencv2/opencv.hpp>
#include <fstream>// 加载标签文件获得分类标签
std::string labels_txt_file = "./mask_classes.txt";
std::vector<std::string> readClassNames();
std::vector<std::string> readClassNames()
{std::vector<std::string> classNames;std::ifstream fp(labels_txt_file);if (!fp.is_open()){printf("could not open file...\n");exit(-1);}std::string name;while (!fp.eof()){std::getline(fp, name);if (name.length())classNames.push_back(name);}fp.close();return classNames;
}int main(int argc, char** argv) {// 预测的目标标签数std::vector<std::string> labels = readClassNames();// 测试图片cv::Mat frame = cv::imread("./mask.jpg");cv::imshow("输入图", frame);// ******************* 1.初始化ONNXRuntime环境 *******************Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "YOLOV5-onnx");// ***************************************************************// ******************* 2.设置会话选项 *******************// 创建会话Ort::SessionOptions session_options;// 优化器级别:基本的图优化级别session_options.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);// 线程数:4session_options.SetIntraOpNumThreads(4);// 设备使用优先使用GPU而是才是CPUstd::cout << "onnxruntime inference try to use GPU Device" << std::endl;OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);OrtSessionOptionsAppendExecutionProvider_CPU(session_options, 1);// ******************************************************// ******************* 3.加载模型并创建会话 *******************// onnx训练模型文件std::string onnxpath = "./yolov5s-mask.onnx";std::wstring modelPath = std::wstring(onnxpath.begin(), onnxpath.end());Ort::Session session_(env, modelPath.c_str(), session_options);// ************************************************************// ******************* 4.获取模型输入输出信息 *******************int input_nodes_num = session_.GetInputCount(); // 输入节点输int output_nodes_num = session_.GetOutputCount(); // 输出节点数std::vector<std::string> input_node_names; // 输入节点名称std::vector<std::string> output_node_names; // 输出节点名称Ort::AllocatorWithDefaultOptions allocator; // 创建默认配置的分配器实例,用来分配和释放内存 // 输入图像尺寸int input_h = 0;int input_w = 0;// 获取模型输入信息for (int i = 0; i < input_nodes_num; i++) {// 获得输入节点的名称并存储auto input_name = session_.GetInputNameAllocated(i, allocator);input_node_names.push_back(input_name.get());// 显示输入图像的形状auto inputShapeInfo = session_.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();int ch = inputShapeInfo[1];input_h = inputShapeInfo[2];input_w = inputShapeInfo[3];std::cout << "input format: " << ch << "x" << input_h << "x" << input_w << std::endl;}// 获取模型输出信息int nums;int nbs;int ncs;for (int i = 0; i < output_nodes_num; i++) {// 获得输出节点的名称并存储auto output_name = session_.GetOutputNameAllocated(i, allocator);output_node_names.push_back(output_name.get());// 显示输出结果的形状auto outShapeInfo = session_.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();nums = outShapeInfo[0];nbs = outShapeInfo[1];ncs = outShapeInfo[2];std::cout << "output format: " << nums << "x" << nbs << "x" << ncs << std::endl;}// **************************************************************// ******************* 5.输入数据预处理 *******************// 原始图像的宽高int w = frame.cols;int h = frame.rows;// 原始图像与输入图像之间的缩放系数float x_factor = 0.0;float y_factor = 0.0;// 获得原始图像中宽高中的长边,最为变换正方形的边长int _max = std::max(h, w); // 将原始的矩形图像放大变换成正方形图像,默认补零cv::Mat image = cv::Mat::zeros(cv::Size(_max, _max), CV_8UC3);cv::Rect roi(0, 0, w, h);frame.copyTo(image(roi));// 计算宽高的缩放系数,模型的输入恒定为640×640,必须强制转换成浮点数x_factor = image.cols / static_cast<float>(640); y_factor = image.rows / static_cast<float>(640);// 完成归一化:1.0 / 255.0;缩放:cv::Size(input_w, input_h);格式转换(BGR转RGB):truecv::Mat blob = cv::dnn::blobFromImage(image, 1.0 / 255.0, cv::Size(input_w, input_h), cv::Scalar(0, 0, 0), true, false);std::cout << blob.size[0] << "x" << blob.size[1] << "x" << blob.size[2] << "x" << blob.size[3] << std::endl;// ********************************************************// ******************* 6.推理准备 *******************// 占用内存大小,后续计算是总像素*数据类型大小size_t tpixels = 3 * input_h * input_w;std::array<int64_t, 4> input_shape_info{ 1, 3, input_h, input_w };// 准备数据输入auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);Ort::Value input_tensor_ = Ort::Value::CreateTensor<float>(allocator_info, blob.ptr<float>(), tpixels, input_shape_info.data(), input_shape_info.size());// 模型输入输出所需数据(名称及其数量),模型只认这种类型的数组const std::array<const char*, 1> inputNames = { input_node_names[0].c_str() };const std::array<const char*, 1> outNames = { output_node_names[0].c_str()};// **************************************************// ******************* 7.执行推理 *******************std::vector<Ort::Value> ort_outputs;try {ort_outputs = session_.Run(Ort::RunOptions{ nullptr }, inputNames.data(), &input_tensor_, 1, outNames.data(), outNames.size());}catch (std::exception e) {std::cout << e.what() << std::endl;}// **************************************************// ******************* 8.后处理推理结果 *******************// 1x25200x6 获取(第一个)输出数据并包装成一个cv::Mat对象,为了方便后处理const float* pdata = ort_outputs[0].GetTensorMutableData<float>();cv::Mat det_output(nbs, ncs, CV_32F, (float*)pdata);std::vector<cv::Rect> boxes; // 目标框的坐标位置std::vector<float> confidences; // 目标框的置信度std::vector<int> classIds; // 目标框的类别得分// 剔除置信度较低的目标框,不作处理for (int i = 0; i < det_output.rows; i++) {float confidence = det_output.at<float>(i, 4);if (confidence < 0.45) {continue;}// 获得当前目标框的类别得分cv::Mat classes_scores = det_output.row(i).colRange(5, ncs);// 这里与图像分类的方式一致cv::Point classIdPoint; // 用于存储分类中的得分最大值索引(坐标)double score; // 用于存储分类中的得分最大值minMaxLoc(classes_scores, 0, &score, 0, &classIdPoint);// 处理分类得分较高的目标框if (score > 0.25){ // 计算在原始图像上,目标框的左上角坐标和宽高// 在输入图像上目标框的中心点坐标和宽高float cx = det_output.at<float>(i, 0); float cy = det_output.at<float>(i, 1);float ow = det_output.at<float>(i, 2);float oh = det_output.at<float>(i, 3);//原始图像上目标框的左上角坐标int x = static_cast<int>((cx - 0.5 * ow) * x_factor); int y = static_cast<int>((cy - 0.5 * oh) * y_factor);//原始图像上目标框的宽高int width = static_cast<int>(ow * x_factor);int height = static_cast<int>(oh * y_factor);// 记录目标框信息cv::Rect box;box.x = x;box.y = y;box.width = width;box.height = height;boxes.push_back(box);classIds.push_back(classIdPoint.x);confidences.push_back(score);}}// NMS:非极大值抑制(Non-Maximum Suppression),去除同一个物体的重复多余的目标框std::vector<int> indexes; // 剔除多余目标框后,保留的目标框的序号cv::dnn::NMSBoxes(boxes, confidences, 0.25, 0.45, indexes);// 遍历筛选出的目标框for (size_t i = 0; i < indexes.size(); i++) {int idx = indexes[i]; // 获取当前目标框序号int cid = classIds[idx]; // 获取目标框分类得分// 输入/输出图像:frame;目标位置信息:boxes[idx];目标框颜色: cv::Scalar(0, 0, 255);// 边框线的厚度:4;线条类型:8;坐标点小数位数精度:0(通常为0)cv::rectangle(frame, boxes[idx], cv::Scalar(0, 0, 255), 4, 8, 0); // 在原始图片上框选目标区域// 输入/输出图像:frame;绘制文本内容:labels[cid].c_str();文本起始位置(左下角):boxes[idx].tl();// 字体类型:cv::FONT_HERSHEY_PLAIN;字体大小缩放比例:2.5;文本颜色:cv::Scalar(255, 0, 0);文本线条的厚度:3;线条类型:8putText(frame, labels[cid].c_str(), boxes[idx].tl(), cv::FONT_HERSHEY_PLAIN, 2.5, cv::Scalar(255, 0, 0), 3, 8); // 目标区域的类别}// ********************************************************// 在测试图像上加上预测的目标位置和类别cv::imshow("输入图像", frame);cv::waitKey(0);// ******************* 9.释放资源*******************session_options.release();session_.release();// *************************************************return 0;
}
图片正确识别是否带着口罩:
总结
尽可能简单、详细的讲解了C++下OnnxRuntime环境部署YOLOV5模型的过程。