transforemr网络理解

1.transformer网络中数据的流动过程:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.transformer中残差的理解:

残差连接(Residual Connection) 的核心思想就是通过将输入与经过变化的输出相加,来最大限度地保留原始信息。
在这里插入图片描述

transforemr中注意力层网络和前馈神经网络的区别?

自注意力机制(Self-Attention Mechanism)

作用:

自注意力机制的主要作用是根据输入序列中的每个元素,动态地关注序列中其他相关元素。这种机制允许模型捕捉序列中不同位置的全局依赖关系,从而使得信息在整个序列中进行交互。
工作机制:
自注意力机制通过计算输入序列的 查询(Query)、键(Key) 和 值(Value) 矩阵,来决定每个输入元素与其他元素的相关性。相关性用点积注意力得分表示,并根据这些注意力得分对序列中的值进行加权求和。这样,序列中的每个位置都能根据其他位置的信息来更新自身的表示。
前馈神经网络:
作用:
前馈神经网络的主要作用是对每个输入元素进行独立的非线性变换。FFNN 在自注意力之后用于进一步处理和转化信息,但它并不考虑输入序列中元素之间的相互关系。
工作机制:
前馈神经网络通常是一个逐元素(即对每个序列位置单独操作)的两层全连接神经网络,带有激活函数。每个元素被映射到更高维度,然后再映射回原来的维度。
在这里插入图片描述

transformer中每个元素生成的对应的q,k,v是怎么生成的呢?

在这里插入图片描述
在这里插入图片描述
举个例子介绍:
在这里插入图片描述
3.Q,K,V矩阵在注意力机制中的作用:
在这里插入图片描述 - 注意力机制(Self-Attention)的确主要作用是寻找序列中两个元素之间的相似性。它通过计算查询向量(Q)和键向量(K)的点积,来衡量序列中元素之间的关系或依赖性,并根据这些相似性来加权值向量(V)。这种机制使得每个元素都能动态调整自身表示,能够捕捉输入序列中全局的信息。简单来说,注意力机制在做的是“找相似”:通过 Q 和 K 的相关性,决定每个元素与其他元素的关联程度。

  • 前馈神经网络(Feedforward Neural Network,
    FFN)则是在序列的每个元素上独立进行非线性变换,相当于寻找一个拟合能力比较强的函数。它不关注元素间的依赖关系,而是通过复杂的非线性变换(通常是带有激活函数的全连接层)增强模型对数据的表达能力。FFN 可以理解为一种增强模型对复杂模式的拟合能力的操作。简单来说,前馈神经网络在做的是“拟合非线性函数”:通过对输入的复杂非线性变换,提升模型对输入的表达和拟合能力。
    总结:
  • 注意力机制:主要作用是寻找序列中元素之间的相似性和依赖性。
  • 前馈神经网络:主要作用是增强模型的非线性表达能力,相当于寻找一个拟合复杂模式的函数。

从矩阵变换的角度来理解transformer框架

从矩阵变换的角度解读 Transformer 框架时, 主要可以通过矩阵的操作理解整个模型中的计算过程, 特别是在自注意力机制、残差连接和前馈神经网络中。

  1. 输入与嵌入层
  • 首先, 输入的序列通常是经过嵌入 (embedding) 后的词向量, 假设输入序列长度为 N N N, 每个词向量的维度为 d model  d_{\text {model }} dmodel  。嵌入的结果就是一个 N × d model  N \times d_{\text {model }} N×dmodel  的矩阵, 表示为 X X X
  • X X X 会加入位置编码(Positional Encoding), 该位置编码也是一个矩阵, 大小同样为 N × d model  N \times d_{\text {model }} N×dmodel  ,它帮助模型捕捉序列中元素的顺序信息。

2.自注意力机制
在这里插入图片描述
注意力打分计算:

  • 计算查询矩阵 Q Q Q 与键矩阵 K K K 的点积:
    Attention ⁡ ( Q , K , V ) = softmax ⁡ ( Q K T d k ) V \operatorname{Attention}(Q, K, V)=\operatorname{softmax}\left(\frac{Q K^T}{\sqrt{d_k}}\right) V Attention(Q,K,V)=softmax(dk QKT)V
    这一步通过矩阵乘法 Q K T Q K^T QKT 来得到元素间的相似性得分。结果是一个 N × N N \times N N×N的矩阵,表示每个序列元素对其他元素的注意力权重。

权重矩阵与值矩阵相乘:

  • 计算得到的注意力权重矩阵与 V V V 矩阵相乘, 得到最终的注意力输出。这样, 每个元素的输出实际上是其他元素的加权组合。
  • 自注意力机制的整个过程可以看作是基于矩阵乘法的线性变换。通过这些矩阵乘法,模型能够捕捉到序列中不同位置间的依赖关系。
  1. 残差连接与层归一化
  • 在自注意力机制计算完成后, 输出的矩阵会通过残差连接和层归一化操作。残差连接就是将输入 X X X 加到自注意力的输出上:
    Z = LayerNorm ⁡ ( X + Attention ⁡ ( Q , K , V ) ) Z=\operatorname{LayerNorm}(X+\operatorname{Attention}(Q, K, V)) Z=LayerNorm(X+Attention(Q,K,V))
    这里的加法是矩阵元素对应位置的相加, 这样可以帮助信息更好地传播, 避免梯度消失。
  1. 前馈神经网络
  • 接下来的前馈神经网络对每个位置的表示进行独立的非线性变换。它也是通过两个线性变换完成的:
    FFN ⁡ ( Z ) = ReLU ⁡ ( Z W 1 + b 1 ) W 2 + b 2 \operatorname{FFN}(Z)=\operatorname{ReLU}\left(Z W_1+b_1\right) W_2+b_2 FFN(Z)=ReLU(ZW1+b1)W2+b2
    其中, W 1 W_1 W1 W 2 W_2 W2 是权重矩阵, b 1 b_1 b1 b 2 b_2 b2 是偏置。这个过程可以看作是对输入矩阵进行两次线性变换, 中间夹带 ReLU 激活函数。

transformer中的多头注意力机制的理解。

自注意力机制的并行化主要指的是多头注意力机制 (Multi-Head Attention)。这种机制通过将自注意力分成多个头来并行处理不同的子空间,从而提高模型的表示能力。我们来详细解释一下多头注意力的并行化原理。

  1. 单头注意力机制
    在常规的自注意力机制中, 输入的每个序列元素通过生成查询矩阵 Q Q Q 、键矩阵 K K K和值矩阵 V V V 来计算注意力得分, 并最终通过注意力得分对序列元素进行加权组合。这个过程本质上是通过点积来捕捉序列中不同元素之间的依赖关系, 并生成新的表示。
    但是, 单头注意力只能学习到一种特定的注意力模式, 可能不足以捕捉复杂的依赖关系。尤其是对于输入的不同特征, 模型可能希望从多个角度来捕捉序列元素之间的联系。
  2. 多头注意力机制
    为了增强模型的表示能力,多头注意力机制被提出。它的核心思想是将输入的数据划分成多个注意力头(heads),每个注意力头在一个子空间中独立计算注意力,然后将各个头的结果拼接起来。这种方式允许模型从不同的角度来观察输入序列,从而捕捉到更丰富的关系。
    具体操作流程:
  3. 生成多个头的 Q , K , V Q, K, V Q,K,V 矩阵:
  • 对输入的矩阵 X X X 通过不同的线性变换生成多个不同的 Q , K , V Q, K, V Q,K,V 矩阵。假设有 h h h 个头, 则每个头都会有自己的查询、键和值矩阵。

Q i = X W Q i , K i = X W K i , V i = X W V i Q_i=X W_Q^i, \quad K_i=X W_K^i, \quad V_i=X W_V^i Qi=XWQi,Ki=XWKi,Vi=XWVi

其中 W Q i , W K i , W V i W_Q^i, W_K^i, W_V^i WQi,WKi,WVi 是第 i i i 个头的线性变换权重。
2. 计算每个头的自注意力:

  • 对每个头进行自注意力计算, 步骤与单头注意力相同。具体为:

Attention  i = softmax ⁡ ( Q i K i T d k ) V i \text { Attention }_i=\operatorname{softmax}\left(\frac{Q_i K_i^T}{\sqrt{d_k}}\right) V_i  Attention i=softmax(dk QiKiT)Vi

这一步会为每个头生成独立的注意力输出。
3. 拼接多个头的结果:

  • 在得到所有注意力头的输出后, 将这些结果沿着特征维度进行拼接:

Concat  ( head  1 , head  2 , … , head  h ) \text { Concat }\left(\text { head }_1, \text { head }_2, \ldots, \text { head }_h\right)  Concat ( head 1, head 2,, head h)

这个拼接操作将所有头的输出组合成一个大的矩阵, 表示模型对输入的多角度注意力表示。

并行化的本质:

在计算多头注意力时,每个注意力头的计算是完全独立的,这意味着所有的头可以并行计算。这也是多头注意力机制的一大优势——并行计算能够提升计算效率,同时还可以增加模型的表示能力。
在硬件层面,GPU 等加速器非常擅长并行化操作,因此可以轻松处理多头注意力机制中的多个矩阵乘法操作。在实际应用中,这种并行化大大减少了模型的训练和推理时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/420340.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

GMS地下水数值模拟及溶质(包含反应性溶质)运移模拟技术深度应用

以地下水数值模拟软件GMS操作为主要授课内容,在教学中强调模块化教学,分为前期数据收集与处理;三维地质结构建模;地下水流动模型构建;地下水溶质运移模型构建和反应性溶质运移构建5个模块;采用全流程模式将…

计算机技术专硕,三维数字地球的学习路径?

三维数字地球是一个跨学科领域,涉及地理信息系统(GIS)、计算机图形学、遥感技术、大数据处理等多个方面。作为计算机技术专硕的学生,可以按照以下学习路径来逐步深入: 1、基础理论学习: 地理信息系统&…

C 408—《数据结构》算法题基础篇—链表(上)

目录 Δ前言 一、链表中特定值结点的删除 0.题目: 1.算法设计思想: 2.C语言描述: 3.算法的时间和空间复杂度: 二、链表链表最小值结点的删除 0.题目 : 1.算法设计思想 : 2.C语言描述 : 3.算法的时间和空间复杂度 : 三、链…

【FPGA数字信号处理】- FIR串行滤波器

理解和掌握 FIR 串行滤波器是踏入数字信号处理领域的重要一步。 那么,什么是 FIR 串行滤波器?它是如何工作的?又有着怎样的神奇之处呢?让我们一起揭开它的神秘面纱。 一、FIR 滤波器简介 FIR 滤波器,全称为有限脉冲…

PointNet++改进策略 :模块改进 | x-Conv | PointCNN, 结合局部结构与全局排列提升模型性能

目录 前言PointCNN实现细节1. X X X-Conv 操作输入输出步骤 2. PointCNN 网络架构层级卷积分类与分割任务 3. 数据增强4. 效率优化 前言 这篇论文介绍了一种名为 PointCNN 的方法,旨在从点云(point cloud)数据中学习特征。传统卷积神经网络…

【前端】探索webpack3项目build速度优化, 优化个p

文章目录 背景uglifyjs-webpack-pluginwebpack3 压缩混淆js 优化踩坑。结论 背景 webpack3 babel7 uglifyjs-webpack-plugin的项目,build起来是什么体验。 大抵是写了两个月后,发现build时间从120s激增到400s。而这400秒中,有50多秒是Ugli…

江协科技STM32学习- P11 中断系统,EXTI外部中断

🚀write in front🚀 🔎大家好,我是黄桃罐头,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流 🎁欢迎各位→点赞👍 收藏⭐️ 留言📝​…

Pygame中Sprite类实现多帧动画3-3

4 使用自定义类MySprite 使用自定义类MySprite实现多帧动画的步骤是首先创建MySprite类的实例,之后使用相关函数对该实例进行操作。 4.1 创建MySprite类的实例 创建MySprite类的实例的代码如图12所示。 图12 创建MySprite类的实例的代码 其中,变量dr…

Dagger:Android 和 Java 的快速依赖注入框架

在软件开发中,依赖注入(DI)是一种设计模式,用于实现控制反转,减少代码耦合,提高模块化。Dagger 是一个由 Google 开发的依赖注入库,专门用于 Android 和 Java 应用程序,以其快速和高…

TiDB-从0到1【完结】

来来回回3个月,TiDB-从0到1系列就此完结。 如果各位读者有时间整个系列阅读并根据内容掌握实操的话,最次也有中级TiDB工程师的水准了。 TiDB-从0到1-体系结构 TiDB-从0到1-分布式存储 TiDB-从0到1-分布式事务 TiDB-从0到1-MVCC TiDB-从0到1-部署篇 TiDB…

通信工程学习:什么是IFMP(Ipsilon流管理协议)

IFMP:Ipsilon流管理协议 IFMP(Ipsilon Flow Management Protocol),即Ipsilon流量管理协议,是一种用于网络流量管理的协议。它主要用于IP交换机、IP交换网关或IP主机中,通过控制数据传送,将现有网…

Java代码审计篇 | ofcms系统审计思路讲解 - 篇1 | 环境搭建、路由机制

文章目录 Java代码审计篇 | ofcms系统审计思路讲解 - 篇1 | 环境搭建、路由机制1. 前言2. 项目环境搭建3. 项目路由机制3.1. 1)先搜索pom.xml文件,看看使用了什么框架3.2. 2)确定是否是spring的路由机制3.3. 3)确定自写路由机制的…

Chapter 14 计算机网络基本概述

欢迎大家订阅【Vue2Vue3】入门到实践 专栏,开启你的 Vue 学习之旅! 文章目录 前言一、网络的基本概念二、集线器、交换机和路由器三、互连网与互联网四、网络的类型五、互连网的组成1. 边缘部分2. 核心部分 六、网络协议 前言 计算机网络是现代信息社会…

【每日一题】LeetCode 104.二叉树的最大深度(树、深度优先搜索、广度优先搜索、二叉树)

【每日一题】LeetCode 104.二叉树的最大深度(树、深度优先搜索、广度优先搜索、二叉树) 题目描述 给定一个二叉树 root,我们需要计算并返回该二叉树的最大深度。二叉树的最大深度是指从根节点到最远叶子节点的最长路径上的节点数。 思路分…

极米科技:走出舒适圈,推动数据架构现代化升级 | OceanBase 《DB大咖说》

《DB 大咖说》第 13 期,邀请到了极米科技软件与创新产品线高级架构师施刘凡来进行分享。 在小红书平台上,“是否应将家里的电视升级为投影仪?”这一话题激发了上百万篇笔记的分享与推荐,反映出年轻群体对投影仪的偏好。随着手机、…

ESP32 UDP 05

1.在上一文章基础上修改,文章网址 ESP32-Ethernet-04-CSDN博客 2.基本代码 /* Ethernet Basic ExampleThis example code is in the Public Domain (or CC0 licensed, at your option.)Unless required by applicable law or agreed to in writing, thissoftware…

Apple Intelligence深夜炸场!苹果发布4颗自研芯片,iPhone/iWatch/AirPods大升级

今年 6 月,苹果在 WWDC 上正式推出 Apple Intelligence。消息发布次日,苹果股价在盘中突破 200 美元大关,创 2022 年 11 月 10 日以来最大涨幅,截至收盘,苹果总市值升至 3.18 万亿美元(约合人民币 23 万亿&…

通信工程学习:什么是IP-CAN(IP连接接入网)

IP-CAN:IP连接接入网 IP-CAN(IP连接接入网)是一个通过IP实现用户设备(UE)与IP多媒体子系统(IMS)实体之间连通的网络实体和接口的集合。以下是对IP-CAN的详细解释: 一、定义与概述 1…

深度学习实战87-高中数学自适应测试系统研究与应用研发,前后台页面设计

大家好,我是微学AI ,今天给大家介绍一下深度学习实战87-高中数学自适应测试系统研究与应用研发,前后台页面设计。高中数学自适应测试系统旨在通过精准评估学生能力,用最少的题目发现其薄弱环节,并提供定制化的学习计划,帮助学生快速提升成绩。同时,系统结合了AI大模型实现…

WinCC 中对 VBS 进行单步执行调试

以前应该写过文章给各位展示如何在WinCC 中通过自身控件对脚本(C、VBS)进行脚本诊断和排错。但是也有用户反馈说在编写了一些相对复杂的脚本后,WinCC自身控件无法做到单步调试,也会影响脚本的诊断调试效率。如果能够对WinCC 中的脚…