【深度学习】线性回归的从零开始实现与简洁实现

前言

我原本后面打算用李沐老师那本《动手学深度学习》继续“抄书”,他们团队也免费提供了电子版(https://zh-v2.d2l.ai/d2l-zh-pytorch.pdf)。但书里涉及到代码,一方面展示起来不太方便,另一方面我自己也有很多地方看不太懂。

这让我开始思考起我“抄书”的意义了。如果都是文字,我感觉抄起来可以加深印象,在抄的同时理解并思考。

但是如果涉及到代码,我没办法在抄的时候就能理解,就能很顺畅地把代码解释出来。需要自己先去调试一遍,才能心安理得地介绍起来。

于是,我开始停止自己看书,打算先去看看视频。土堆的视频先从加载数据讲起,然后是 TensorBoard,我感觉和前面学到的训练/测试什么的,根本没关系,也不知道为什么要讲这些,就听不下去了,想着先去看看实操。

然后我到看刘二大人的教程,他先讲线性模型和梯度下降等等的原理,再上代码实操,看起来就比较舒服。我把他的代码自己敲了一遍,虽说能跑起来,但还是存在很多疑惑。

控制台不停地打印着训练轮数和损失,看起来有点样子,但是不直观。我想着要是能把训练过程中的 loss 作图出来就好。虽说可以利用 python 的作图包绘制,但我感觉应该会有专门的工具来实现。

我上网搜了下,发现 pytorch 就自带了 tensorboard 这个工具可以可视化训练过程。哎,这不就是土堆视频里讲的那个么。我就又老老实实去看土堆的视频了。

经过这些过程,我早已经变得很挫败,甚至感觉自己不是学这个的料。东看一点,西看一点,最后还是回到了李沐老师的书上。

我感觉自已经走了很多弯路,《动手学深度学习》这本书里最前面一章就是介绍预备知识,我嫌繁琐,跳过没看,直接看后面的内容,但我又看不懂,又要倒回去重新看预备知识,这样就会产生很多挫败情绪。

虽说经过这几天折腾,隐隐约约学到了一些东西,但显然是划不来的。我以后就老老实实跟着李沐老师,先认认真真搞懂基础的几个模型,不去担心可能学了以后用不到之类的问题,之后再重点看看自己导师研究的方向。

下面我们从线性回归开始,先介绍它的关键思想,然后手动实现它,体会这一过程,再借助 pytorch 来实现。

通过对比这两种方式,可以更好地理解 pytorch 的用法。

一、线性回归关键思想

回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。

线性回归(linear regression)指输入 x \pmb{x} x 和输出 y y y 之间的关系是线性的,即 y y y 可以表示为 x \pmb{x} x 中元素的加权和,如下式: y = w 1 ⋅ x 1 + w 2 ⋅ x 2 + b . y=w_1\cdot x_{1}+w_{2}\cdot x_{2}+b. y=w1x1+w2x2+b. 其中, w 1 w_{1} w1 w 2 w_{2} w2 称为权重,其决定了每个 x x x y y y 的影响; b b b 称为偏置(bias)。

偏置是指当所有 x x x 都取 0 时,输出值应该为多少。如果没有偏置项,模型的表达能力将受到限制。

给定一个数据集,我们的目标是寻找模型的权重 w \pmb{w} w 和偏置 b b b,使得根据模型做出的预测大体符合真实情况。

在开始寻找最好的模型参数(model parameters)前,我们还需要两个东西:

  • 一种模型质量的度量方式;(怎么判断这个模型好不好?)
  • 一种能够更新模型以提高模型质量的方法。(如果模型质量不太行,怎么提高?)

损失函数(模型质量度量方式)

损失函数(loss function)能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小。

回归问题中最常用的损失函数是平方误差函数。

可以想想我们以前学直线拟合时的最小二乘法。

随机梯度下降(提高模型质量方法)

梯度下降(gradient descent)通过不断地在损失函数递减的方向上更新参数来降低误差。

其最简单的方法是计算损失函数(所有样本的损失均值)关于模型参数的导数。但实际中的执行可能会非常慢:

因为在每一次更新参数前,我们必须遍历整个数据集。因此,我们通常会在每次需要计算更新的时候随机抽取一小批样本,这种变体称为小批量随机梯度下降(minibatch stochastic gradient descent)。

在每次迭代中,我们首先随机抽样一个小批量 B B B,它是又固定数量的训练样本组成。然后,我们计算小批量的平均损失关于模型参数的导数。最后,我们将梯度乘以一个预先确定的正数 η \eta η,并从当前参数的值中减掉。

总结起来,算法的步骤为:

  1. 初始化模型参数;
  2. 从数据集中随机抽取小批量样本且在负梯度的方向上更新参数,并不断迭代这一步骤。

正态分布与平方损失

正态分布和线性回归之间的关系很密切。正态分布(normal distribution),也称为高斯分布(Gaussian distribution),最早由德国数学家高斯(Gauss)应用于天文学研究。

简单地说,若随机变量 X X X 具有均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2,其正态概率密度函数为: p ( x ) = 1 2 π σ 2 exp ⁡ ( − 1 2 σ 2 ( x − μ ) 2 ) . p(x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\bigg(-\frac{1}{2\sigma^2}(x-\mu)^2\bigg). p(x)=2πσ2 1exp(2σ21(xμ)2). 正态分布的可视化图像如下图所示。改变均值会产生沿 x x x 轴的偏移,增加方差将会分散分布、降低其峰值。

不同参数的正态分布图像

均方误差损失函数可以用于线性回归的一个原因是:我们假设了观测中包含噪声,其中噪声服从正态分布。

在高斯噪声的假设下,最小化均方误差等价于对线性模型的极大似然估计。

二、线性回归的从零开始实现

导入的包有:

import random
import torch
import matplotlib.pyplot as plt

生成数据集

我们可以自己用带有噪声的线性模型生成一系列数据,通过优化算法不断减小损失,最终尽可能恢复用来生成数据的参数。

例如,用 y = 2 x 1 − 3.4 x 2 + 4.2 + ϵ y=2x_1-3.4x_2+4.2+\epsilon y=2x13.4x2+4.2+ϵ 来生成一系列数据点,其中 ϵ \epsilon ϵ 服从均值为 0,标准差为 0.01 的正态分布。

为提高计算性能,我们可以用矩阵进行表示,即 [ y 1 y 2 ⋮ y n ] = [ x 1 x 2 x 1 x 2 ⋯ ⋯ x 1 x 2 ] n × 2 [ 2 − 3.4 ] + 4.2 + ϵ \begin{bmatrix} y_1 \\\ y_2 \\\ \vdots \\\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\\ x_1 & x_2 \\\ \cdots & \cdots \\\ x_1 & x_2 \end{bmatrix}_{n\times 2} \begin{bmatrix} 2 \\\ -3.4 \end{bmatrix}+4.2+\epsilon y1 y2  yn = x1 x1  x1x2x2x2 n×2[2 3.4]+4.2+ϵ 后面两项常数项可以看成 n × 1 n\times1 n×1 的矩阵,由于张量具有广播机制,可以直接相加。

生成数据并可视化 y y y x 2 x_2 x2 关系的代码如下:

import torch
import matplotlib.pyplot as pltnum_samples = 1000  # 生成的数据点个数
# 原模型的两个参数
w_true = torch.tensor([2, -3.4])
b_true = 4.2
# 设置随机种子,方便验证和复现
random_seed = 326
torch.manual_seed(random_seed)
# 随机生成自变量
X = torch.randn((num_samples, len(w_true)))
# 生成不含噪声的 y
y = torch.matmul(X, w_true) + b_true
# 生成带有噪声的y
y += torch.normal(0, 0.01, y.shape)
# 绘制数据点,看看长什么样
# 自变量有两个,只绘制一个自变量与y的关系
plt.scatter(X[:, 1], y)
plt.show()

y与第二个自变量的散点图

为提高代码的复用性,可以把生成数据的部分封装成一个函数,这样如果要生成其他参数的数据时就更加方便。后续很多代码都会尽量用函数的形式表达。

# 生成数据集
def generate_data(num_samples, w, b):# 随机生成自变量x = torch.randn((num_samples, len(w)))# 生成不含噪声的 yy = torch.matmul(x, w) + b# 生成带有噪声的yy += torch.normal(0, 0.01, y.shape)print(y.shape)return x, y.reshape((-1, 1))

读取数据

如果我们采用小批量随机梯度下降作为优化算法,需要读取数据集并每次抽取一小批。

我们采用随机抽取的方式,即需要将数据集的样本打乱。编写的读取数据函数如下:

def load_data(batch_size, features, labels):num_examples = len(features)indices = list(range(num_examples))# 打乱索引顺序random.shuffle(indices)# 每次都返回一个小批量样本for i in range(0, num_examples, batch_size):batch_indices = torch.tensor(indices[i: min(i + batch_size, num_examples)])yield features[batch_indices], labels[batch_indices]

初始化参数

我们得先有一个最初的参数放进去,这样才可以去改进。如果这个初始参数选的好,可能很快就接近真实参数了。

初始权重 w 我们采用均值为 0,标准差为 0.01 的正态分布随机数,偏置 b 初始设为 0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

requires_grad=True表示需要对这些参数进行梯度的计算。

模型的定义

想想之前学过的拟合,可以用线性拟合,也可以用二次曲线拟合,都是为了将输入与输出关联起来。

可以把模型理解为一个函数,把输入放进去,可以得到一个输出。我们通过对原始数据的可视化分析,选取线性模型。

# 定义模型
def my_linear(x, w, b):# 线性模型return torch.matmul(x, w) + b

损失函数

采用平方损失函数来衡量模型好坏。注意需要对 y 使用 reshape,存在行向量与列向量的区别。

# 定义损失函数
def my_loss(y_hat, y):# 平方损失函数,y_hat为模型预测值# 这里reshape是因为读取出来的y是行向量,而预测值为列向量return (y_hat - y)**2 / 2

优化算法

采用小批量随机梯度下降算法进行优化。对参数进行更新,并清零梯度。

# 定义优化器
def my_optimizer(params, lr, batch_size):"""小批量随机梯度下降"""with torch.no_grad(): # 以下操作不计算梯度for param in params:param -= lr * param.grad / batch_sizeparam.grad.zero_()

训练模型

训练是一个反复的过程,从初始的模型参数出发,计算其预测值与损失,随后进行反向传播,得到损失函数对各个参数的梯度,最后利用优化算法对参数进行更新,转入下一轮训练。

学习率lr和训练轮数num_epochs是两个非常重要的超参数,需要反复试验不断调整,以获得较好的训练效果。

# 小批量的大小
batch_size = 10
# 学习率和训练轮数
lr = 0.03
num_epochs = 3# 开始训练
for epoch in range(num_epochs):for x, y in load_data(batch_size, features, labels):l = my_loss(my_linear(x, w, b), y)  # X和y的小批量损失# 因为l形状是(batch_size,1),而不是一个标量。# l中的所有元素被加到一起,并以此计算关于[w,b]的梯度l.sum().backward()my_optimizer([w, b], lr, batch_size)  # 使用参数的梯度更新参数with torch.no_grad():train_l = my_loss(my_linear(features, w, b), labels)# 打印出每轮训练的损失print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')# 评估训练效果
print(f'w的估计误差: {w_true - w.reshape(w_true.shape)}')
print(f'b的估计误差: {b_true - b}')

从打印出的结果可以发现,第一轮训练后的损失已经比较小了,且每轮训练后损失都在减小。最终得到的两个参数非常接近于我们用于生成数据的参数了。

epoch 1, loss 0.041334
epoch 2, loss 0.000153
epoch 3, loss 0.000048
w的估计误差: tensor([4.0889e-05, 1.1015e-04], grad_fn=<SubBackward0>)
b的估计误差: tensor([0.0004], grad_fn=<RsubBackward1>)

需要注意的是,我们不应该认为我们能完美地恢复参数,我们更关心如何高度准确预测参数。

三、线性回归的简洁实现

下面我们利用 pytorch 来实现线性回归模型,它可以帮助避免一些重复性的工作。需要导入的包有:

import torch
from torch.utils import data
from torch import nn

生成数据集

与从零实现同样,我们需要先有一个数据集。由于线性模型所需要的数据较为简单,可以自己生成。

我们采用前面写好的生成数据函数,利用随机种子生成一个相同的数据集。

读取数据集

pytorch 提供了 DataLoader 供我们进行数据读取,我们只需要传入相应格式的数据,传入参数batch_sizeshuffle的值,就可以得到一个随机小批量数据迭代器。

def load_data(data_arrays, batch_size, is_train=True):     # 读取数据"""构造一个PyTorch数据迭代器"""dataset = data.TensorDataset(*data_arrays)return data.DataLoader(dataset, batch_size, shuffle=is_train)

定义模型

在从零实现中,我们明确定义了线性模型的参数,并编写了内部进行计算的代码。如果模型的计算变得复杂,并且每天需要经常使用时,我们就会考虑对这一过程进行简化。

我们可以使用 pytorch 预先定义好的“层”,这样我们就只需要关注使用哪些层来构建我们的模型,而不用去关注怎么实现这个层。

我们首先定义一个模型变量 net,它是一个 Sequential 类的实例。Sequential 类可以将很多个层串联在一起。

当给定输入数据时,net 将数据传入第一层,然后将第一层的输出作为第二层的输入,以此类推。

线性回归可以看作一层的神经网络,实际上是不需要使用 Sequential 的。但由于以后使用的模型都会是很多层的,在这里使用 Sequtntial 可以帮助我们理解。

单层神经网络(线性回归)

上图中,它的每一个输入都通过矩阵-向量乘法得到它的输出,被称为全连接层(fully-connected layer)。

在 pytorch 中,全连接层在 nn.Linear 类中定义,它的第一参数是输入的形状,我们有两个 x x x ,所以是 2。它的第二个参数是输出的形状,线性模型的 y y y 是标量,所以是 1。

net = nn.Sequential(nn.Linear(2, 1))    # 定义模型

初始化模型参数

可以把 net 看成一个列表,用 net[0] 访问模型中的第一层,用 weight.data 和 bias.data 访问里面的参数。

我们还可以用 noraml_ 和 fill_ 来重写参数值,完成初始化。

同样,初始权重 w 我们采用均值为 0,标准差为 0.01 的正态分布随机数,偏置 b 初始设为 0。

# 初始化模型参数
net[0].weight.data.normal_(0, 0.01)
net[0].bias.data.fill_(0)

定义损失函数

同定义模型类似,我们可以直接调用现成的类,平方误差使用的是 nn.MSELoss 类。

loss = nn.MSELoss()   # 损失函数

定义优化器

同样,优化算法直接调用现成的 optim.SGD,利用 net.paremeters() 可以直接获取模型中的参数传入,再传入 lr 值即可定义一个小批量随机梯度下降优化器。

lr = 0.03    # 学习率
optimizer = torch.optim.SGD(net.parameters(), lr=lr)   # 优化器

训练模型

和前面的训练逻辑类似,对于每一个小批量,我们会经历以下步骤:

  • 出初始的参数出发,将数据代入模型生成输出并计算损失(前向传播);
  • 通过反向传播计算梯度;
  • 通过调用优化器来更新参数。
num_epochs = 3    # 训练轮数
for epoch in range(num_epochs):      # 开始训练for X, y in data_iter:l = loss(net(X) ,y)      # 前向传播optimizer.zero_grad()    # 避免上一轮影响,清零梯度l.backward()             # 反向传播optimizer.step()         # 更新参数l = loss(net(features), labels)print(f'epoch {epoch + 1}, loss {l:f}')
w = net[0].weight.data
print('w的估计误差:', w_true - w.reshape(w_true.shape))
b = net[0].bias.data
print('b的估计误差:', b_true - b)

同样我们可以在每轮训练后输出当前的损失,以及打印训练完成时的参数和真实参数的偏差。

epoch 1, loss 0.000273
epoch 2, loss 0.000096
epoch 3, loss 0.000096
w的估计误差: tensor([0.0004, 0.0002])
b的估计误差: tensor([-0.0002])

和从零开始实现一样,最后估计得到的参数非常接近真实参数。


两种方式实现线性神经网络的完整 py 文件见资源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/422607.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Arm GIC-v3中断原理及验证(通过kvm-unit-tests)

一、参考连接 gic-v3相关原理可参考https://zhuanlan.zhihu.com/p/520133301 本文主要通过开源测试工具kvm-unit-tests&#xff0c;针对GIC的中断进行一系列验证&#xff0c;这样可以直入中断底层&#xff0c;熟悉整个原理。 kvm-unit-tests官网为kvm-unit-tests / KVM-Unit…

labview禁用8080端口

需求背景 最近电脑上安装了labview全家桶,发现idea的8080端口项目启动报错,一直提示8080端口被占用。最简单的办法就是找到8080端口的服务,然后关闭这个服务。但是我不想这么做,我想把labview的web服务器的端口给修改了。 操作教程 1、cmd查看8080端口 2、windows进程 同…

022.PL-SQL进阶—分页过程

课 程 推 荐我 的 个 人 主 页&#xff1a;&#x1f449;&#x1f449; 失心疯的个人主页 &#x1f448;&#x1f448;入 门 教 程 推 荐 &#xff1a;&#x1f449;&#x1f449; Python零基础入门教程合集 &#x1f448;&#x1f448;虚 拟 环 境 搭 建 &#xff1a;&#x1…

Flask 实现用户登录功能的完整示例:前端与后端整合(附Demo)

目录 前言Demo 前言 对于python用户的登录&#xff0c;以下只是提供一个Demo用于学习 更多的python知识点可从我的专栏中进行学习 python专栏详细分析Flask中的蓝图Blueprint&#xff08;附Demo&#xff09;详细分析Flask部署云服务器&#xff08;图文介绍&#xff09;构建F…

2024 年 GitLab Global DevSecOps 报告解读

近日 GitLab 正式发布了 2024 年 GitLab Global DevSecOps 报告&#xff0c;报告主题为 What’s next in DevSecOps。在全球有超 5000 位 IT 人员参与了该报告的调研&#xff0c;超 70% 为企业管理者&#xff0c;50% 以上的受访者所在企业规模超过 500人。该报告深刻揭示了在 A…

深度学习_GPT2Block详解(casual attention)

一、GTP2Block 整体结构 1.1 block准备 import torch from torch import nn from transformers import GPT2Model, GPT2Config from transformers.models.gpt2.modeling_gpt2 import GPT2Blockcfg GPT2Config() print(cfg.add_cross_attention) blk GPT2Block(cfg, layer_…

《ECMAScript 与 JavaScript:差异与共通》

一、概念辨析 《ECMAScript 与 JavaScript&#xff1a;差异与共通》 ECMAScript&#xff08;简称 ES&#xff09;是一种由 Ecma International 标准化的脚本语言规范。它定义了脚本语言的核心特性&#xff0c;包括语法、类型、语句、关键字等。例如&#xff0c;ECMAScript 规定…

被要求撤回Blackwell?一家初创企业称英伟达侵权自家技术,忍无可忍!英伟达和伙伴微软被齐齐告上法庭,赔偿或高达数十亿!

刚刚&#xff0c;一家初创公司居然把巨头英伟达和微软一起告了&#xff01; 名为Xockets的初创公司在诉讼中称&#xff0c;英伟达和微软公司窃取了其DPU技术&#xff0c;用以开发AI产品&#xff0c;并相互串通以压低其技术的价格&#xff0c;是名副其实的垄断行为&#xff01;…

智汇创想pytest接口自动化测试框架

本测试框架是基于pytest搭建的接口自动化框架&#xff0c;对象为深圳智汇创想官方网站。深圳智汇创想科技有限责任公司&#xff08;深圳智汇创想科技有限责任公司&#xff09;&#xff0c;是一家专注于跨境电子商务的集团公司&#xff0c;全球电商平台多品类多品牌的零售商&…

MATLAB | R2024b更新了哪些好玩的东西?

Hey, 又到了一年两度的MATLAB更新时刻&#xff0c;MATLAB R2024b正式版发布啦&#xff01;&#xff0c;直接来看看有哪些我认为比较有意思的更新吧! 1 小提琴图 天塌了&#xff0c;我这两天才写了个半小提琴图咋画&#xff0c;MATLAB 官方就出了小提琴图绘制方法。 小提琴图…

客户端负载均衡Ribbon实例

文章目录 一&#xff0c;概述二&#xff0c;实现过程三&#xff0c;项目源码1. 源码放送&#xff1a;2. 部署方式 四&#xff0c;功能演示五&#xff0c;其他 一&#xff0c;概述 一般来说&#xff0c;提到负载均衡&#xff0c;大家一般很容易想到浏览器 -> NGINX -> 反…

加密与安全_ sm-crypto 国密算法sm2、sm3和sm4的Java库

文章目录 Presm-crypto如何使用如何引入依赖 sm2获取密钥对加密解密签名验签获取椭圆曲线点 sm3sm4加密解密 Pre 加密与安全_三种方式实现基于国密非对称加密算法的加解密和签名验签 sm-crypto https://github.com/antherd/sm-crypto 国密算法sm2、sm3和sm4的java版。基于js…

PMP--一模--解题--21-30

文章目录 9.资源管理21、 [单选] 项目经理发现一个不可预料的高影响风险已经成为项目的一个因素&#xff0c;团队成员之间的自身利益导致问题得不到解决&#xff0c;项目经理必须快速行动&#xff0c;让团队重新集中精力&#xff0c;以便项目恢复进度&#xff0c;项目经理应该使…

vue3项目实现全局国际化

本文主要梳理vue3项目实现全项目格式化&#xff0c;例如在我前面文章使用若依创建vue3的项目中&#xff0c;地址&#xff1a;若依搭建vue3项目在导航栏中切换&#xff0c;页面中所有的组件的默认语言随之切换&#xff0c;使用的组件库依旧是element-plus&#xff0c;搭配vue-i1…

09-排序1 排序(C)

这一节&#xff0c;测试各类排序算法的运行速度&#xff08;没有基数排序&#xff08;桶&#xff09; 其实在实际学习中&#xff0c;还是有意义的 给定 n 个&#xff08;长整型范围内的&#xff09;整数&#xff0c;要求输出从小到大排序后的结果。 本题旨在测试各种不同的排序…

Windows与Linux下 SDL2的第一个窗口程序

Windows效果和Linux效果如下&#xff1a; 下面是代码&#xff1a; #include <stdio.h> #include "SDL.h"int main(int argc, char* argv[]) { // 初始化SDL视频子系统if (SDL_Init(SDL_INIT_VIDEO) ! 0){// 如果初始化失败&#xff0c;打印错误信息printf(&…

proteus+51单片机+实验(LCD1620、定时器)

目录 1.LCD1602液晶显示屏 1.1基本概念 1.1.1LCD的简介 1.1.2LCD的显示原理 ​​​1.1.3LCD的硬件电路 1.1.4LCD的常见指令 1.1.5LCD的时序 ​​​​​​​1.2代码 1.2.1写命令和写数据操作 1.2.2初始化和测试代码 1. 3.3功能函数 1.3proteus代码 1.3.1器件代码 1.…

探索Python世界的隐藏宝石:Pika库的神秘力量

文章目录 探索Python世界的隐藏宝石&#xff1a;Pika库的神秘力量背景&#xff1a;为何选择Pika&#xff1f;Pik库简介如何安装Pika&#xff1f;简单库函数使用方法场景应用常见Bug及解决方案总结 探索Python世界的隐藏宝石&#xff1a;Pika库的神秘力量 背景&#xff1a;为何…

ELK预警方案:API+XXLJob

目录 步骤一&#xff1a;出一个接口&#xff0c;接口内查询出10分钟内是否有异常信息 步骤二&#xff1a;XXLJob中设置预警的频率 步骤三&#xff1a;在重要的业务处输出指定格式日志即可 步骤一&#xff1a;出一个接口&#xff0c;接口内查询出10分钟内是否有异常信息 {&qu…

Java | Leetcode Java题解之第402题移掉K位数字

题目&#xff1a; 题解&#xff1a; class Solution {public String removeKdigits(String num, int k) {Deque<Character> deque new LinkedList<Character>();int length num.length();for (int i 0; i < length; i) {char digit num.charAt(i);while (!…