神经网络多层感知器异或问题求解-学习篇

多层感知器可以解决单层感知器无法解决的异或问题
首先给了四个输入样本,输入样本和位置信息如下所示,现在要学习一个模型,在二维空间中把两个样本分开,输入数据是个矩阵,矩阵中有四个样本,样本的维度是三维,三个维度分别表示偏置,x坐标,y坐标。对应的标签Y是 区分矩阵中的样本,例如:[1,0,0]对应0,[1,0,1]对应1,以此类推。使用单层感知器无法解决此异或问题,怎么样使用多层感知器求解这个问题?
在这里插入图片描述

#输入数据 各维度表示偏置,x坐标,y坐标
X = np.array([[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
#标签
Y = np.array([[0,1,1,0]])
#第一个网络层参数矩阵,初始化输入层权值,取值范围-1 到 1
V = (np.random.random((3,4)) - 0.5) * 2
#第二个网络层参数矩阵,初始化输入层权值,取值范围-1 到 1
W = (np.random.random((4,1)) - 0.5) * 2
使用误差反向传播算法原理

算法原理:
误差反向传播算法的基本思想是通过两个过程来实现神经网络的训练:信号的正向传播与误差的反向传播。

正向传播: 输入一个训练样本,通过神经网络的前向传播计算出输出结果。具体来说,从输入层开始,计算每一层节点的输出值,直到得到网络最终的输出结果。每一层节点的输出都是基于前一层的输出和当前层的权重、偏置计算得到的。
误差反向传播: 将输出结果与实际结果进行比较,计算出误差。然后,将误差从输出层向输入层反向传播,计算每个节点对误差的贡献,并根据贡献值调整每个节点的权重和偏置。这个过程是通过链式法则实现的,即利用误差的梯度信息来逐层调整权重和偏置。

算法步骤:
初始化: 随机初始化神经网络的权重和偏置。
输入训练样本对: 将训练样本输入到神经网络的输入层。
前向传播: 根据当前的权重和偏置,计算每一层节点的输出值,直到得到网络最终的输出结果。
计算网络输出误差: 将输出结果与实际结果进行比较,计算出误差。误差的计算通常使用损失函数,如均方误差、交叉熵损失等。
反向传播: 根据误差计算每个节点对误差的贡献,并将此贡献值反向传播回去。具体来说,对于每个输出节点,计算其误差,然后将此误差沿着连接线进行反向传播,直到到达输入层的节点。
调整权重和偏置: 根据误差贡献值,对每个权重和偏置进行调整。调整的方法通常是使用梯度下降算法,即根据误差的梯度信息来更新权重和偏置。
检查网络总误差: 检查网络的总误差是否达到精度要求。如果满足,则训练结束;如果不满足,则返回步骤2,继续训练过程。

接下来我们进行一下公式迭代:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
根据上面的计算,我们就可以求得Wji的参数

下面使用Python解决多层感知器异或问题

import numpy as np
import matplotlib.pyplot as plt#输入数据
X = np.array([[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
#标签
Y = np.array([[0,1,1,0]])
#第一个网络层参数矩阵,初始化输入层权值,取值范围-1 到 1
V = (np.random.random((3,4)) - 0.5) * 2
#第二个网络层参数矩阵,初始化输入层权值,取值范围-1 到 1
W = (np.random.random((4,1)) - 0.5) * 2def get_show():#正样本all_positive_x = [0,1]all_positive_y = [0,1]#负样本all_negative_x = [0,1]all_negative_y = [1,0]plt.figure()plt.plot(all_positive_x, all_positive_y,'bo')plt.plot(all_negative_x, all_negative_y,'yo')plt.xlabel('x')plt.ylabel('y')plt.show()#get_show()lr = 0.11  #学习率
#激活函数(从0-1)
def sigmoid(x):return 1/(1+np.exp(-x))
#激活函数的导数
def dsigmoid(x):x = x*(1-x)return x
#更新权值(2个权值矩阵,V和W)
def update():global X,Y,V,W,lrL1 = sigmoid(np.dot(X,V))  #隐藏层输出(4*3)x(3*4)=(4,4)L2 = sigmoid(np.dot(L1,W))  #输出层输出(4,4)x(4*1)=(4,1)L2_delta = (Y.T - L2) * dsigmoid(L2) #输出层的误差=下一层的误差*激活函数导数*与下一层的连接权重矩阵(全为1)L1_delta = L2_delta.dot(W.T)*dsigmoid(L1) #隐藏层的误差=下一层的误差*激活函数导数*与下一层的连接权重矩阵W_C = lr*L1.T.dot(L2_delta)V_C = lr*X.T.dot(L1_delta)W = W + W_C #对W矩阵的参数更新 模型的学习V = V + V_C #对V矩阵的参数更新errors = []  #记录误差
for i in range(100000):update() #更新权值if i % 1000 == 0: #输出误差L1 = sigmoid(np.dot(X,V))L2 = sigmoid(np.dot(L1,W))errors.append(np.mean(np.abs(Y.T-L2)))print("Error:",np.mean(np.abs(Y.T-L2)))
plt.plot(errors)
plt.ylabel('Errors')
plt.show()L1 = sigmoid(np.dot(X, V))  # 隐藏层输出(4*3)x(3*4)=(4,4)
L2 = sigmoid(np.dot(L1, W))  # 输出层输出(4,4)x(4*1)=(4,1)
print(L2) #第二层的结果 概率矩阵 》0.5是一类,小于05是一类def classify(x):if x > 0.5:return 1else:return 0for i in map(classify, L2): #L2一共4个数print(i)

运行结果为:
在这里插入图片描述

#是与 标签Y = np.array([[0,1,1,0]]) 趋向一致的
[[0.01011728][0.98925078][0.99013233][0.01323669]]
0
1
1
0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/423283.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity全面取消Runtime费用 安装游戏不再收版费

Unity宣布他们已经废除了争议性的Runtime费用,该费用于2023年9月引入,定于1月1日开始收取。Runtime费用起初是打算根据使用Unity引擎安装游戏的次数收取版权费。2023年9月晚些时候,该公司部分收回了计划,称Runtime费用只适用于订阅…

[数据集][目标检测]车窗状态检测车窗开关检测数据集VOC+YOLO格式299张3类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):299 标注数量(xml文件个数):299 标注数量(txt文件个数):299 标注类别…

应用程序已被 Java 安全阻止:Java 安全中的添加的例外站点如何对所有用户生效

如题:应用程序已被 Java 安全阻止,如下图所示: 在寻找全局配置的时候花了一个上午的时间,到处搜解决方法,都不可行。最后还是参考官方的文档配置好了。如果你碰到了同样的问题,这篇文章一定可以帮到你。 环…

论文阅读:AutoDIR Automatic All-in-One Image Restoration with Latent Diffusion

论文阅读:AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 这是 ECCV 2024 的一篇文章,利用扩散模型实现图像恢复的任务。 Abstract 这篇文章提出了一个创新的 all-in-one 的图像恢复框架,融合了隐扩散技术&#x…

【重学 MySQL】二十八、SQL99语法新特性之自然连接和 using 连接

【重学 MySQL】二十八、SQL99语法新特性之自然连接和 using 连接 自然连接(NATURAL JOIN)USING连接总结 SQL99语法在SQL92的基础上引入了一些新特性,其中自然连接(NATURAL JOIN)和USING连接是较为显著的两个特性。 自…

《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》P84

更正卷积与相关微课中互相关运算动画中的索引。 1-D correlation rectwave 禹晶、肖创柏、廖庆敏《数字图像处理(面向新工科的电工电子信息基础课程系列教材)》 禹晶、肖创柏、廖庆敏《数字图像处理》资源二维码

性能测试【Locust】基本使用介绍

一.前言 Locust是一款易于使用的分布式负载测试工具,基于事件驱动,使用轻量级执行单元(如协程)来实现高并发。 二.基本使用 以下是Locust性能测试使用的一个基础Demo示例,该示例有安装Locust、编写测试脚本、启动测…

三方共建 | 网络安全运营中心正式揭牌成立

9月3日,广州迎来了一场网络安全领域的盛事。悦学科技、聚铭网络、微步在线联合打造的7x24小时网络安全运营中心(以下简称“中心”)正式成立,并在现场举行了庄重而热烈的揭牌仪式。众多行业专家、企业代表齐聚一堂,共同…

MPP数据库之SelectDB

SelectDB 是一个高性能、云原生的 MPP(大规模并行处理)数据库,旨在为分析型数据处理场景提供快速、弹性和高效的解决方案。它专为处理大规模结构化和半结构化数据设计,常用于企业级业务分析、实时分析和决策支持。 SelectDB 是在…

实习项目|苍穹外卖|day9

实战作业。 用户端新增功能 1. 查询历史订单 接口设计 返回的是orderorderdetails(那我这里就先查order,再根据order_id查) 分页 pageHelper的使用: //controller相关函数GetMapping("/historyOrders")ApiOperati…

【GBase 8c V5_3.0.0 分布式数据库常用几个SQL】

1.检查应用连接数 以管理员用户 gbase,登录数据库主节点。 接数据库,并执行如下 SQL 语句查看连接数。 SELECT count(*) FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;2.查看空闲连接 查看空闲(state 字段为”idle”)且长时间没有更…

AI问答-Vue实例属性/实例方法:$refs、$emit、$attrs、$props、$data...

一、本文简介 在Vue.js中,$ 符号通常用于表示Vue实例或组件上的内置属性和方法,这些被称为“实例属性”或“实例方法”。以下是一些常见的以$开头的Vue实例属性和方法 1.1、实例属性 序号实例属性解释1$dataVue实例的数据对象,用于存储组件…

Linux - 探秘/proc/sys/net/ipv4/ip_local_port_range

文章目录 Pre概述默认值及其意义评估需求如何调整临时修改永久修改测试和验证 修改的潜在影响 Pre Linux - 探秘 Linux 的 /proc/sys/vm 常见核心配置 计划: 简要解释 /proc/sys/net/ipv4/ip_local_port_range 文件的功能和作用。介绍该文件的默认值及其影响。说明…

ChatGPT: A Simulator Who Passed the Turing Test?

文章目录 引言Introduction:Applications:Discussion:Future Outlook:汉语翻译 引言 本文是一篇英语课前pre,简单介绍了ChatGPT的功能,内容一般,希望能帮到你。🙂 Introduction: Standing at the intersection of natural lan…

Failed building wheel for opencv-python-headless

Failed building wheel for opencv-python-headless 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我是博主英杰,211科班出身,就职于医疗科技公司,热衷分享知识,武汉城市开发者社区主理人…

UiBot教程:实现复杂流程图的高效方法

在自动化测试和RPA(机器人流程自动化)领域,使用UiBot绘制复杂流程图是日常工作中常见的挑战之一。如何在繁杂的逻辑中保持高效?如何实现复杂流程的自动化设计而不迷失于其中?这是许多测试工程师和自动化开发者所面临的…

存储课程学习笔记1_访问scsi磁盘读写测试(struct sg_io_hdr,ioctl,mmap)

创建虚拟机时,可以选择SCSI,STAT,NVME不同类型的磁盘。 0:总结 》了解内核提供的访问scsi的结构和方法 (主要是sg_io_hdr_t 结构体和ioctl函数)。 》需要读scsi协议文档,了解相关指令,只演示了16字节固定…

智启新机,云驱增长 | 华宇亮相2024腾讯全球数字生态大会

9月5日-6日,以“智启新机,云驱增长”为主题的2024腾讯全球数字生态大会在深圳国际会展中心举办。本次大会聚集了多位企业领军人物及行业专家,共同聚焦数字化下的产业新增长,以前沿探索为基石,以行业最佳实践为标杆&…

解密SERP代理:如何提高排名跟踪效率

一、什么是 SERP 代理? SERP代理是指专门用于访问搜索引擎结果页面(SERP)的代理服务器。这些代理服务器能够模拟真实的用户请求,从而避免因频繁查询或位置变化而导致IP被封禁或数据不准确。通过使用SERP代理,您可以获…

java 项目结构 文件说明 潜规则 java入门

java 项目结构 潜规则 java入门 一、controller、service、serviceImpl、Mapper、Xml等文件的作用 下图为java约定俗成的几个文件的作用 二、在项目中的使用情况,由于业务逻辑很简单,所以每个文件中的代码行数都很少 controller.java /*** 资产rim项目…