【python计算机视觉编程——9.图像分割】

python计算机视觉编程——9.图像分割

  • 9.图像分割
    • 9.1 图割
      • 安装Graphviz
      • 下一步:正文
      • 9.1.1 从图像创建图
      • 9.1.2 用户交互式分割
    • 9.2 利用聚类进行分割
    • 9.3 变分法

9.图像分割

9.1 图割

可以选择不装Graphviz,因为原本觉得是要用,后面发现好像用不到。不安装可直接跳到下一步

安装Graphviz

  1. 首先需要先下载Graphviz软件(Download | Graphviz),那些包先不要下载,网上说先下载包再下载软件会报错。在安装过程中,需要注意下图中的一步,其余都是一直下一步就行
    在这里插入图片描述

  2. 检查一下环境变量的路径
    在这里插入图片描述

  3. 接着在自己创建的虚拟环境下安装包
    pip install pydotplus

    pip install graphviz

  4. 这里需要注意的是,还需要再安装一个包,否则单单安装上面的会报错
    pip install python-graphviz

  5. 测试代码

    from graphviz import Digraph
    dot = Digraph(comment='The Round Table')
    dot.node('A', 'King Arthur')
    dot.node('B', 'Sir Bedevere the Wise')
    dot.node('L', 'Sir Lancelot the Brave')dot.edges(['AB', 'AL'])
    dot.edge('B', 'L', constraint='false')
    print(dot.source)  dot.render('round-table.gv',format='jpg', view=True)  
    

    在这里插入图片描述

    在这里插入图片描述

下一步:正文

  • 图割:将一个有向图分割成两个互不相交的集合
  • 基本思想:相似且彼此相近的像素应该划分到同一区域

图割C(C是图中所有边的集合)的“代价”函数定义为所有割的边的权重求合相加:
E c u t = ∑ ( i , j ) ∈ C w i j E_{cut}=\sum_{(i,j)\in C}w_{ij} Ecut=(i,j)Cwij
w i j w_{ij} wij是图中节点i到节点j的边 ( i , j ) (i,j) (i,j)的权重,并且是对割C所有的边进行求和

我们需要用图来表示图像,并对图进行划分,以使得 E c u t E_{cut} Ecut最小。同时在用图表示图像时,需要额外增加两个节点(源点和汇点),并仅考虑那些将源点和汇点分开的割

寻找最小割等同于在源点和汇点间寻找最大流,这里需要用到python-graph工具包( 注:不是 p i p 下载 ! \color{red}{注:不是pip下载!} 注:不是pip下载!),工具包地址如下:GitHub - pmatiello/python-graph: New official repository: https://github.com/Shoobx/python-graph

下载完后,把文件夹放入导包的根目录

在这里插入图片描述

根据路径进行引包,如果引入没有报错,就说明没有问题

from python_graph.core.pygraph.classes.digraph import digraph
from python_graph.core.pygraph.algorithms.minmax import maximum_flow``

这里我是报错了:“jaraco.text"中没有drop_comment, join_continuation, yield_lines函数的问题,然后我在”_jaraco_text.py"文件里找到了这三个函数,索性就直接把他提到根目录上,发现就没报错了

在这里插入图片描述

在这里插入图片描述

另一个导包路径错误在"digraph.py"和"minmax.py"文件中

在这里插入图片描述

接着就可以运行代码了

gr = digraph()
gr.add_nodes([0,1,2,3])
gr.add_edge((0,1), wt=4)
gr.add_edge((1,2), wt=3)
gr.add_edge((2,3), wt=5)
gr.add_edge((0,2), wt=3)
gr.add_edge((1,3), wt=4)
flows,cuts = maximum_flow(gr,0,3)
print('flow is:', flows)
print('cut is:', cuts)

在这里插入图片描述

9.1.1 从图像创建图

我们需要利用图像像素作为节点定义一个图,除了像素节点外,还有两个特定的节点——“源”点和“汇”点,来分别代表图像的前景和背景,我们需要做的是将所有像素与源点、汇点链接起来。

  • 每个像素节点都有一个从源点的传入边
  • 每个像素节点都有一个到汇点的传出边
  • 每个像素节点都有一条传入边和传出边连接到它的近邻。

接着需要用朴素贝叶斯分类器进行分类,我们将第8章的BayesClassifier类搬过来

def build_bayes_graph(im,labels,sigma=1e2,kappa=1):"""   从像素四邻域建立一个图,前景和背景(前景用1标记,背景用-1标记,其他的用0标记)由labels决定,并用朴素贝叶斯分类器建模"""m,n = im.shape[:2]# 每行是一个像素的RGB向量vim = im.reshape((-1,3))# 前景和背景(RGB)foreground = im[labels==1].reshape((-1,3))background = im[labels==-1].reshape((-1,3))    train_data = [foreground,background]# 训练朴素贝叶斯分类器bc = BayesClassifier()bc.train(train_data)# 获取所有像素的概率bc_lables,prob = bc.classify(vim)prob_fg = prob[0]prob_bg = prob[1]# 用m*n+2 个节点创建图gr = digraph()gr.add_nodes(range(m*n+2))source = m*n #  倒数第二个是源点sink = m*n+1 # 最后一个节点是汇点#  归一化for i in range(vim.shape[0]):vim[i] = vim[i] / (np.linalg.norm(vim[i]) + 1e-9)# go through all nodes and add edgesfor i in range(m*n):# 从源点添加边gr.add_edge((source,i),wt=prob_fg[i]/(prob_fg[i]+prob_bg[i]))# 向汇点添加边gr.add_edge((i,sink),wt=prob_bg[i]/(prob_fg[i]+prob_bg[i]))# 向相邻节点添加边if i%n != 0: # 左边存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i-1])**2)/sigma)gr.add_edge((i,i-1),wt=edge_wt)if (i+1)%n != 0: # 如果右边存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i+1])**2)/sigma)gr.add_edge((i,i+1),wt=edge_wt)if i//n != 0: # 如果上方存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i-n])**2)/sigma)gr.add_edge((i,i-n),wt=edge_wt)if i//n != m-1: # 如果下方存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i+n])**2)/sigma)gr.add_edge((i,i+n),wt=edge_wt)return gr    
def gauss(m,v,x):""" Evaluate Gaussian in d-dimensions with independent mean m and variance v at the points in (the rows of) x. http://en.wikipedia.org/wiki/Multivariate_normal_distribution """if len(x.shape)==1:n,d = 1,x.shape[0]else:n,d = x.shape# covariance matrix, subtract meanS = np.diag(1/v)x = x-m# product of probabilitiesy = np.exp(-0.5*np.diag(np.dot(x,np.dot(S,x.T))))# normalize and returnreturn y * (2*np.pi)**(-d/2.0) / (np.sqrt(np.prod(v)) + 1e-6)

写入新函数

def build_bayes_graph(im,labels,sigma=1e2,kappa=1):"""   从像素四邻域建立一个图,前景和背景(前景用1标记,背景用-1标记,其他的用0标记)由labels决定,并用朴素贝叶斯分类器建模"""m,n = im.shape[:2]# 每行是一个像素的RGB向量vim = im.reshape((-1,3))# 前景和背景(RGB)foreground = im[labels==1].reshape((-1,3))background = im[labels==-1].reshape((-1,3))    train_data = [foreground,background]# 训练朴素贝叶斯分类器bc = BayesClassifier()bc.train(train_data)# 获取所有像素的概率bc_lables,prob = bc.classify(vim)prob_fg = prob[0]prob_bg = prob[1]# 用m*n+2 个节点创建图gr = nx.DiGraph()nodes=[]for i in range(m*n+2):nodes.append(str(i))gr.add_nodes_from(nodes)source = m*n #  倒数第二个是源点sink = m*n+1 # 最后一个节点是汇点#  归一化for i in range(vim.shape[0]):vim[i] = vim[i] / (np.linalg.norm(vim[i]) + 1e-9)# go through all nodes and add edgesfor i in range(m*n):# 从源点添加边gr.add_edge(str(source),str(i),capacity=prob_fg[i]/(prob_fg[i]+prob_bg[i]))# 向汇点添加边gr.add_edge(str(i),str(sink),capacity=prob_bg[i]/(prob_fg[i]+prob_bg[i]))# 向相邻节点添加边if i%n != 0: # 左边存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i-1])**2)/sigma)gr.add_edge(str(i),str(i-1),capacity=edge_wt)if (i+1)%n != 0: # 如果右边存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i+1])**2)/sigma)gr.add_edge(str(i),str(i+1),capacity=edge_wt)if i//n != 0: # 如果上方存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i-n])**2)/sigma)gr.add_edge(str(i),str(i-n),capacity=edge_wt)if i//n != m-1: # 如果下方存在edge_wt = kappa*np.exp(-1.0*sum((vim[i]-vim[i+n])**2)/sigma)gr.add_edge(str(i),str(i+n),capacity=edge_wt)return gr    
def show_labeling(im,labels):"""显示图像的前景和背景区域。前景labels=1,背景labels=-1,其他labels=0 """imshow(im)contour(labels,[-0.5,0.5])contourf(labels,[-1,-0.5],colors='b',alpha=0.25)contourf(labels,[0.5,1],colors='r',alpha=0.25)#axis('off')xticks([])yticks([])
def cut_graph(gr,imsize):"""    Solve max flow of graph gr and return binary labels of the resulting segmentation."""
#     print(gr)m,n=imsizesource=m*n # second to last is sourcesink=m*n+1 # last is sink# cut the graphflows,cuts = maximum_flow(gr,source,sink)
#     print(cuts)# convert graph to image with labelsres = np.zeros(m*n)for pos,label in list(cuts.items())[:-2]: # 遍历所有节点,忽略源节点和汇节点# 但因为cuts.items()返回的是元组,需先转成列表再进行切片res[pos] = labelreturn res.reshape((m,n))

其中书本中from scipy.misc import imresize模块,已经不存在于imresize中,这里使用Pillow库中的resize函数进行替代 resize_image_pillow

def resize_image_pillow(image_path, output_path, scale_factor):# 打开图像文件with Image.open(image_path) as img:# 计算新的尺寸new_width = int(img.width * scale_factor)new_height = int(img.height * scale_factor)# 使用双线性插值调整图像大小img_resized = img.resize((new_width, new_height), resample=Image.BILINEAR)# 保存调整后的图像
#         return img_resizedimg_resized.save(output_path)
import numpy as np
from PIL import Image
from pylab import *# resize_image_pillow('empire.jpg', 'empire.jpg', 0.07)
im=np.array(Image.open('empire.jpg'))
size=im.shape[:2]
labels=np.zeros(size)
labels[3:18,3:18]=-1
labels[-18:-3,-18:-3]=1# 对图进行分割
g = build_bayes_graph(im,labels,kappa=1)
res=cut_graph(g,size)figure()
show_labeling(im,labels)figure()
imshow(res)
gray()
axis('off')show()

在这里插入图片描述

9.1.2 用户交互式分割

def create_msr_labels(m, lasso=False):""" Create label matrix for training fromuser annotations. """labels = np.zeros(im.shape[:2])# backgroundlabels[m == 0] = -1labels[m == 64] = -1# foregroundif lasso:labels[m == 255] = 1else:labels[m == 128] = 1return labels# load image and annotation map
im = array(Image.open('empire.jpg'))
m = array(Image.open('empire.bmp'))
# resize
scale = 0.1
im = imresize(im, scale, interp='bilinear')
m = imresize(m, scale, interp='nearest')
# create training labels
labels = create_msr_labels(m, False)
# build graph using annotations
g = build_bayes_graph(im, labels, kappa=2)# cut graph
res = cut_graph(g, im.shape[:2])
# remove parts in background
res[m == 0] = 1
res[m == 64] = 1# plot the result
figure()
imshow(res)
gray()
xticks([])
yticks([])
savefig('labelplot.pdf')

9.2 利用聚类进行分割

def ncut_graph_matrix(im,sigma_d=1e2,sigma_g=1e-2):"""  创建用于归一化割的矩阵,其中 sigma_d 和 sigma_g 是像素距离和像素相似性的权重参数 """m,n = im.shape[:2] N = m*n# 归一化,并创建 RGB 或灰度特征向量if len(im.shape)==3:for i in range(3):im[:,:,i] = im[:,:,i] / im[:,:,i].max()vim = im.reshape((-1,3))else:im = im / im.max()vim = im.flatten()# x,y 坐标用于距离计算xx,yy = meshgrid(range(n),range(m))x,y = xx.flatten(),yy.flatten()# 创建边线权重矩阵W = zeros((N,N),'f')for i in range(N):for j in range(i,N):d = (x[i]-x[j])**2 + (y[i]-y[j])**2 W[i,j] = W[j,i] = exp(-1.0*sum((vim[i]-vim[j])**2)/sigma_g) * exp(-d/sigma_d)return W
from scipy.cluster.vq import *
def cluster(S,k,ndim):""" 从相似性矩阵进行谱聚类 """# 检查对称性if sum(abs(S-S.T)) > 1e-10:print('not symmetric')# 创建拉普拉斯矩阵rowsum = sum(abs(S),axis=0)D = diag(1 / sqrt(rowsum + 1e-6))L = dot(D,dot(S,D))# 计算 L 的特征向量U,sigma,V = linalg.svd(L,full_matrices=False)# 从前 ndim 个特征向量创建特征向量# 堆叠特征向量作为矩阵的列features = array(V[:ndim]).T# k-meansfeatures = whiten(features)centroids,distortion = kmeans(features,k)code,distance = vq(features,centroids)return code,V

在运行下面代码之前,需要安装scikit-image,记得在自己的虚拟环境下安装(我用pip安装不了,后面改用conda,只要在虚拟环境下,用哪个(pip或conda)都是安装在虚拟环境下)

conda install scikit-image

import cv2
import numpy as np
from pylab import  *
from PIL import Image
from skimage.transform import resizeim = Image.open('empire.jpg')
m,n = np.array(im).shape[:2]
# 调整图像的尺寸大小为(wid,wid)
wid = 50rim = im.resize((50,50),Image.BILINEAR)
rim = array(rim,'f')
# 创建归一化割矩阵
# print(rim.shape[:2] )
A = ncut_graph_matrix(rim,sigma_d=1,sigma_g=1e-2)
# 聚类
code,V=cluster(A,k=3,ndim=3)
# 变换到原来的图像大小image=code.reshape(wid,wid)
print(image)codeim = resize(image,(m,n),mode='reflect',anti_aliasing=False,order=0)
# 绘制分割结果
figure()
imshow(codeim)
gray()
show()

在这里插入图片描述

9.3 变分法

当优化的对象是函数时,该问题称为变分问题,需要使用ROF进行降噪。

denoise函数需要传入以下参数

  • im: 输入的噪声图像(灰度图像)。
  • U_init: 对 U(去噪图像)的初始猜测。
  • tolerance: 收敛的容忍度,用于判断迭代是否结束。
  • tau: 步长(或称为步伐),用于控制更新的幅度。
  • tv_weight: 总变差正则化项的权重,控制去噪程度。

denoise函数返回参数

  • U: 去噪后的图像。
  • im - U: 图像的纹理残差,即原始图像中未被去噪部分的残余。
def denoise(im,U_init,tolerance=0.1,tau=0.125,tv_weight=100):""" 这个函数实现了 Rudin-Osher-Fatemi (ROF) 去噪模型,ROF 模型是一个常用的图像去噪方法,基于总变差(Total Variation, TV)正则化来去除噪声,同时保留图像的边缘信息"""m,n=im.shape  #获取图像的高度和宽度#初始化U=U_initPx=im      # 对偶域的x分量Py=im      # 对偶域的y分量error=1while(error>tolerance):Uold=U#原始变量的梯度GradUx=roll(U,-1,axis=1)-U       #变量U梯度的x分量GradUy=roll(U,-1,axis=0)-U       #变量U梯度的y分量#更新对偶变量PxNew=Px+(tau/tv_weight)*GradUx  #更新PxPyNew=Py+(tau/tv_weight)*GradUy  #更新PyNormNew=maximum(1,sqrt(PxNew**2+PyNew**2))#计算PxNew和PyNew的范数,确保其最小值为1Px=PxNew/NormNew    #更新x分量Py=PyNew/NormNew    #更新y分量RxPx=roll(Px,1,axis=1)#计算Px在x方向上的右移RyPy=roll(Py,1,axis=0)#计算Px在y方向上的下移DivP=(Px-RxPx)+(Py-RyPy)#计算Px和Py的梯度U=im+tv_weight*DivP # 更新去噪后的图像Uerror=linalg.norm(U-Uold)/sqrt(n*m)# 计算当前误差return U,im-U            #返回去噪后的图像U和噪声图像

因为 scipy.misc.imsave 已被弃用,所以需要用其他库来完成,这里使用Pillow库来保存图像

import numpy as np
from PIL import Image
im = np.array(Image.open('ceramic-houses_t0.png').convert('L'))
U,T=denoise(im,im,tolerance=0.001)
t=0.4# 基于阈值生成二值图像
binary_image = U < t * U.max()# 将布尔数组转换为 uint8 格式(0 或 255)
binary_image_uint8 = (binary_image * 255).astype(np.uint8)# 创建 Image 对象
img = Image.fromarray(binary_image_uint8)# 保存图像为 PDF
img.save('result.pdf')
from pylab import  *
gray()
subplot(121)
imshow(U)
subplot(122)
imshow(img)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/424064.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker常用操作(基础篇)

Docker常用操作一览图 #查看镜像 docker images #拉取nginx镜像 docker pull nginx #拉取mysql镜像 docker pull mysql docker run -d --name nginx1 -p 80:80 nginx #docker run -d&#xff1a;创建并运行一个容器&#xff0c;-d是让容器以后台进程运行 #--name nginx1&#…

springBoot 集成https

springBoot 集成https 1、springBoot默认的证书格式 pring Boot 需要 .p12 或 .jks 格式的证书。如果你只有 .pem 和 .key 文件&#xff0c;可以使用 openssl 工具将它们转换成 .p12 文件 2、转换.p12 我的证书文件如下&#xff0c;需要转换 2.1 下载openssl https://slpr…

Docker零基础入门

参考课程https://www.bilibili.com/video/BV1VC4y177re/?vd_source=b15169a302bee35f484245aecc69d4dd 参考书籍Docker 实践 - 面向 AI 开发人员的 Docker 实践 (dockerpractice.readthedocs.io) 1. 什么是Docker 1.1. Docker起源 随着计算机的发展,计算机上已经可以运行多…

abVIEW 可以同时支持脚本编程和图形编程

LabVIEW 可以同时支持脚本编程和图形编程&#xff0c;但主要依赖其独特的 图形编程 环境&#xff08;G语言&#xff09;&#xff0c;其中程序通过连线与节点来表示数据流和功能模块。不过&#xff0c;LabVIEW 也支持通过以下方式实现脚本编程的能力&#xff1a; 1. 调用外部脚本…

光伏选址和设计离不开气象分析!

都说光伏选址和设计离不开气象分析&#xff0c;气象条件对太阳能发电影响较大&#xff0c;具体有哪些影响呢&#xff1f;今天我就来讲解下。 - 太阳辐射&#xff1a;太阳辐射的强度是光伏发电的首要因素&#xff0c;对光伏发电有着重要的影响。太阳辐射的强度决定了光伏发电系…

vue2制作高复用页面

记录一下页面搭建记录&#xff0c;利用vue2组件化开发的思想。这个页面适合于大部分信息管理系统~。模板固定&#xff0c;每次使用&#xff0c;直接修改表单表格参数&#xff0c;api接口等。 以上图页面为例&#xff0c;一个基础数据信息页面可以分为&#xff0c;分类&#xff…

Uniapp + Vue3 + Vite +Uview + Pinia 实现购物车功能(最新附源码保姆级)

Uniapp Vue3 Vite Uview Pinia 实现购物车功能&#xff08;最新附源码保姆级&#xff09; 1、效果展示2、安装 Pinia 和 Uview3、配置 Pinia4、页面展示 1、效果展示 2、安装 Pinia 和 Uview 官网 https://pinia.vuejs.org/zh/getting-started.html安装命令 cnpm install pi…

docker-compose elasticsearch 集群搭建(用户登录+https访问)

文章目录 前言docker-compose elasticsearch 集群搭建(用户登录+https访问)1. 效果2. 制作elasticsearch + 分词器镜像2.1. 拉取elasticsearch:7.11.12.2. 制作特定版本镜像3. docker-compose elasticsearch 集群制作4. es账户密码初始化前言 如果您觉得有用的话,记得给博主点…

Proxyless Service Mesh:下一代微服务架构体系

一、项目背景及意义 在当今的微服务架构中&#xff0c;应用程序通常被拆分成多个独立的服务&#xff0c;这些服务通过网络进行通信。这种架构的优势在于可以提高系统的可扩展性和灵活性&#xff0c;但也带来了新的挑战&#xff0c;比如&#xff1a; 服务间通信的复杂性&#…

STM32中的计时与延时

前言 在裸机开发中,延时作为一种规定循环周期的方式经常被使用,其中尤以HAL库官方提供的HAL_Delay为甚。刚入门的小白可能会觉得既然有官方提供的延时函数,而且精度也还挺好,为什么不用呢?实际上HAL_Delay中有不少坑,而这些也只是HAL库中无数坑的其中一些。想从坑里跳出来…

安卓13允许app启动服务 android13允许应用启动服务 无法启动服务 Background start not allowed: service

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.编译6.彩蛋1.前言 android13应用启动服务,有些应用会被禁止启动服务,开启的服务会失败,这是高版本的android的特性,我们需要更改下frameworks的代码。 2.问题分析 查看下logcat信息 B…

军用软件安全性可靠性设计与编码规范技术培训

​课程介绍&#xff1a; 随着我国武器装备数字化、智能化水平不断提高&#xff0c;软件在武器装备中的作用越来越关键。由于软件能以人所不能比的速度可靠地完成关键控制任务&#xff0c;几乎在每个重要系统中都由计算机系统来进行控制&#xff0c;软件在运行和控制危险以及在…

破解AI生成检测:如何用ChatGPT降低论文的AIGC率

学境思源&#xff0c;一键生成论文初稿&#xff1a; AcademicIdeas - 学境思源AI论文写作 降低论文的“AIGC率”是个挑战&#xff0c;但有一些策略可以尝试。使用ChatGPT逐步调整和改进内容&#xff0c;使其更加自然和原创&#xff0c;降低AI检测工具识别出高“AIGC率”的概率…

源码运行springboot2.2.9.RELEASE

1 环境要求 java 8 maven 3.5.2 2 下载springboot源码 下载地址 https://github.com/spring-projects/spring-boot/releases/tag/v2.2.9.RELEASE 3 修改配置 修改spring-boot-2.2.9.RELEASE/pom.xml 修改spring-boot-2.2.9.RELEASE/spring-boot-project/spring-boot-tools…

基于Vue的兴趣活动推荐APP的设计与实现_kaic

摘 要 近年来&#xff0c;随着互联网不断的普及与发展&#xff0c;生活也变的多姿多彩&#xff0c;每个人几乎都有属于自己的小小兴趣圈子&#xff0c;但人们的兴趣却不止一个&#xff0c;大多数人是没有时间为自己的兴趣“买单”的。为了解决我们在生活中对于各种兴趣活动的…

什么品牌的宠物空气净化器性价比最高?352/希喂/霍尼韦尔/有哈/IAM实测对比

我开着一家猫咪咖啡馆&#xff0c;我们店貌美小猫可没少给我带来回头客~先给大家看看我的招财猫们 开了三年了&#xff0c;也是前不久店里才开始有点盈利&#xff0c;开始那段时间没少收到投诉&#xff0c;差点就干不下去了。店里养着的猫多&#xff0c;平时鱼油、冻干也没稍微…

uniapp+若依 开发租房小程序源码分享

1、使用Uniapp开发的前台&#xff0c;基于 Vue.js 开发所有前端应用的框架&#xff0c;开发者编写一套代码&#xff0c;可发布到iOS、Android、Web&#xff08;响应式&#xff09;、以及各种小程序 2、基于SpringBoot的权限管理系统&#xff0c;易读易懂、界面简洁美观。 核心…

ppt文件怎么压缩变小一些?8种压缩PPT文件的方法推荐

ppt文件怎么压缩变小一些&#xff1f;在现代工作环境中&#xff0c;PPT文件常常是我们展示信息和分享想法的主要工具。然而&#xff0c;当这些文件变得庞大时&#xff0c;它们不仅会占用大量的存储空间&#xff0c;还可能导致处理速度变慢&#xff0c;影响整体工作效率。这种情…

Spring扩展点系列-BeanFactoryAware

文章目录 简介源码分析示例代码示例一&#xff1a;验证BeanFactoryAware执行顺序示例二&#xff1a;动态获取其他bean示例三&#xff1a;动态bean的状态 简介 spring容器中Bean的生命周期内所有可扩展的点的调用顺序 扩展接口 实现接口ApplicationContextlnitializer initia…

【YashanDB知识库】数据库获取时间和服务器时间不一致

本文转自YashanDB官网&#xff0c;具体内容可见数据库获取时间和服务器时间不一致 【问题分类】功能使用 【关键字】服务器时间、数据库时间 【问题描述】数据库获取的时间和服务器时间不一致。 【问题原因分析】YashanDB并没有时区的概念&#xff0c;数据库的时间以数据库启…