本节主要展示上位机部分,采用BSP编程,不附带BSP中各个头文件的说明,仅仅是对main逻辑进行解释
main.c
上下位机通信
通过串口通信,有两位数据验证头(verify数组中保存对应的数据头 0xAA55)
通信格式
上位发送11字节数据,其中前两位是0xAA55用于数据验证,第三位用于判断当前上位机发送数据的功能
当第三位数据为0x00时,表明当前是验证数据,用于检验串口通信是否成功,若成功返回字节序列 [0xaa ,0x55,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09]
当第三位数据为0x01时,表明当前是收集温度,光照,土壤湿度数据,返回字节序列 [0xaa ,0x55,0x01,0x温度十位,0x温度个位,0x温度小数位,0x光照百位,0x光照十位,0x光照个位,0x,0x电压个位,0x电压小数位]
当第三位数据为0x02时,表明当前是修改温度,光照,土壤湿度阈值
在函数my1S中定义了收集温度,光照,土壤湿度数据的实现函数,并且通过检验数据是否超过阈值来触发蜂鸣器报警,根据不同的触发条件来发出不同的声音。
全部代码
#include "STC15F2K60S2.H" //±ØÐë¡£
#include "sys.H" //±ØÐë¡£
#include "Uart1.H"
#include "adc.h"
#include "displayer.H"
#include "Beep.H"
#include "StepMotor.h"#define N 11#ifdef _displayer_H_
code char decode_table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x08,0x40,0x01, 0x41, 0x48, /* ÐòºÅ: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 *//* ÏÔʾ: 0 1 2 3 4 5 6 7 8 9 (ÎÞ) ÏÂ- ÖÐ- ÉÏ- ÉÏÖÐ- ÖÐÏÂ- */ 0x3f|0x80,0x06|0x80,0x5b|0x80,0x4f|0x80,0x66|0x80,0x6d|0x80,0x7d|0x80,0x07|0x80,0x7f|0x80,0x6f|0x80 }; /* ´øСÊýµã 0 1 2 3 4 5 6 7 8 9 */
#endifcode unsigned long SysClock=11059200; //±ØÐë¡£¶¨Òåϵͳ¹¤×÷ʱÖÓƵÂÊ(Hz)£¬Óû§±ØÐëÐ޸ijÉÓëʵ¼Ê¹¤×÷ƵÂÊ£¨ÏÂÔØʱѡÔñµÄ£©Ò»ÖÂunsigned char rxdbuf[N],txdbuf[N];
code char verify[2]={0xaa,0x55};
unsigned int s0,s1,s2,s3,s4,s5,s6,s7;
unsigned char limit[8] = {3,7,5,0,9,0,1,0};int rt_to_tem(unsigned int adc, unsigned char adcbit)
{ code int temtable[32]={2000,1293,1016,866,763,685,621,567,520,477,439,403,370,338,308,278,250,222,194,167,139,111,83,53,22,-11,-4.7,-87,-132,-186,-256,-364};unsigned char resh; //¸ß5bit ²é±íunsigned int resl; //µÍ11bit ²åÖµresl=adc<<(16-adcbit); //ÏÈͳһÀ©Õ¹³É16bitresh=resl>>11;resl=resl & 0x07ff;return(temtable[resh]-(((temtable[resh]-temtable[resh+1])*resl)>>11));
}void check_received_data(void) {unsigned int flag = 0;unsigned int data_flag = 0;unsigned int change_flag = 0;if(rxdbuf[2] == 0x00) flag = 1;if(rxdbuf[2] == 0x01) data_flag = 1;if(rxdbuf[2] == 0x02) change_flag = 1;if(flag){txdbuf[0] = 0xaa;txdbuf[1] = 0x55;txdbuf[2] = 0x00;txdbuf[3] = 0x01;txdbuf[4] = 0x02;txdbuf[5] = 0x03;txdbuf[6] = 0x04;txdbuf[7] = 0x05;txdbuf[8] = 0x06;txdbuf[9] = 0x07;txdbuf[10] = 0x08;Uart1Print(txdbuf, sizeof(txdbuf));}if(!flag && data_flag){// txdbuf[0] = 0xaa;txdbuf[1] = 0x55;txdbuf[2] = 0x01;txdbuf[3] = s0;txdbuf[4] = s1;txdbuf[5] = s2;txdbuf[6] = s3;txdbuf[7] = s4;txdbuf[8] = s5;txdbuf[9] = s6;txdbuf[10] = s7;Uart1Print(txdbuf, sizeof(txdbuf)); }if(!flag && change_flag){limit[0] = rxdbuf[3];limit[1] = rxdbuf[4];limit[2] = rxdbuf[5];limit[3] = rxdbuf[6];limit[4] = rxdbuf[7];limit[5] = rxdbuf[8];limit[6] = rxdbuf[9];limit[7] = rxdbuf[10];txdbuf[0] = 0xaa;txdbuf[1] = 0x55;txdbuf[2] = 0x02;txdbuf[3] = limit[0];txdbuf[4] = limit[1];txdbuf[5] = limit[2];txdbuf[6] = limit[3];txdbuf[7] = limit[4];txdbuf[8] = limit[5];txdbuf[9] = limit[6];txdbuf[10] = limit[7];Uart1Print(txdbuf, sizeof(txdbuf)); }
}void my1S()
{ static unsigned int temperature_sum=0;static unsigned int light_sum = 0;static unsigned int voltage_ge_sum = 0;static unsigned int voltage_xiaoshu_sum = 0;static unsigned int count=0;int temperature_tem;int light_tem;int voltage_ge_tem;int voltage_xiaoshu_tem;struct_ADC adcres;int temperature_shi;int temperature_ge;int temperature_xiaoshu;int temperature;int temperature_aac;int light_bai;int light_shi;int light_ge;int voltage_ge;int voltage_xiaoshu;int voltage;int i=0;adcres=GetADC();temperature_sum = adcres.Rt;temperature_tem = rt_to_tem(temperature_sum,14);temperature_shi = temperature_tem/100%10;temperature_ge = temperature_tem/10%10;temperature_xiaoshu = temperature_tem%10;temperature = temperature_shi *100 + temperature_ge * 10 + temperature_xiaoshu - 320;temperature_shi = (temperature * 10 / 18) /100;temperature_ge = (temperature * 10 /18) %100 /10;temperature_xiaoshu = (temperature * 10 /18) %10;s0 = temperature_shi;s1 = temperature_ge-2;s2 = temperature_xiaoshu;temperature_aac=s0*10+s1*1+s2*0.1;light_sum = adcres.Rop;light_tem = light_sum;light_bai = light_tem%1000/100;light_shi = light_tem%100/10;light_ge = light_tem%10;s3 = light_bai;s4 = light_shi;s5 = light_ge;voltage_ge_sum = adcres.EXT_P10/50;voltage_xiaoshu_sum = adcres.EXT_P10%50/5;voltage_ge = voltage_ge_sum;voltage_xiaoshu = voltage_xiaoshu_sum;voltage = (adcres.EXT_P10%1000/100) * 100 + (adcres.EXT_P10%100/10) * 10 + adcres.EXT_P10%10;s6 = voltage / 50;s7 = voltage%50/5;if(light_sum>90){SetBeep(1000,200);}if(temperature_aac>38){SetBeep(8000,50);}if(s6>=3){SetBeep(2000,100);P41 &=~ 0X2;}if(s6<3){for( i=0;i<60;i++){P41 |= 0X2;}
}Seg7Print(s0,16+s1,s2,s3,s4,s5,16+s6,s7); //ÿ160mSÏÔʾһ´Îζȣ¬Ã¿´ÎÊÇ16´Î²âÁ¿µÄƽ¾ù tem%10
}void main()
{ Uart1Init(9600);AdcInit(ADCexpEXT); DisplayerInit();BeepInit();StepMotorInit();SetDisplayerArea(0,7);LedPrint(0);P41 |= 0X2;SetUart1Rxd(rxdbuf, sizeof(rxdbuf), verify, 2); SetEventCallBack(enumEventSys1S,my1S); SetEventCallBack(enumEventUart1Rxd, check_received_data);MySTC_Init(); while(1) { MySTC_OS(); }
}
硬件电路连接
扩展了树莓派的自动灌溉模块,链接如下:灌溉元件
元件单独使用的链接图,但是由于我们需要获取实时电压,我们选择将 AO 接入到 P1.0 来做数模转换,与之对应的是对于继电器的 IN 端口,我们采用stc-b板的vcc来给它供电,这是因为电池提供的电压是6v,超过了继电器的 5v 需求,电源只用来给水泵供电。
整体线路图
外加电源
黄色的模块竖串联,横断路
检测单元
驱动模块