计算机视觉总结

以下是针对上述问题的详细解答,并结合代码示例进行说明:

1. 改进YOLOv5人脸检测模块,复杂光照场景准确率从98.2%提升至99.5%

优化具体过程

  • 光照补偿:在数据预处理阶段,采用自适应光照补偿算法,对图像进行实时增强,以减少光照变化对人脸检测的影响。
  • 数据增强:在训练数据中增加复杂光照场景下的样本,如强光、弱光、背光等,通过数据增强提高模型对不同光照条件的适应性。
  • 模型调整:对YOLOv5模型的网络结构进行微调,增加对光照变化敏感的特征提取层,提升模型对光照变化的鲁棒性。
  • 参数优化:调整模型的超参数,如学习率、锚框尺寸等,以适应复杂光照场景下的人脸检测任务。

当初这么做的原因
在实际应用中,门禁系统需要在各种光照条件下都能准确检测人脸,因此需要针对复杂光照场景进行优化,以提高系统的稳定性和可靠性。

import torch
import torchvision.transforms as transforms
from PIL import Image# 定义自适应光照补偿函数
def adaptive_lightning_compensation(image):# 转换为YUV颜色空间yuv_image = image.convert("YUV")y, u, v = yuv_image.split()# 对亮度通道进行直方图均衡化y_eq = transforms.functional.equalize(y)# 合并通道并转换回RGByuv_eq = Image.merge("YUV", (y_eq, u, v))rgb_eq = yuv_eq.convert("RGB")return rgb_eq# 定义数据增强变换
data_transforms = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomRotation(10),transforms.RandomResizedCrop(224, scale=(0.8, 1.0)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载YOLOv5模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)# 微调模型
model.train()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)# 训练循环
for epoch in range(num_epochs):for images, targets in train_loader:# 应用光照补偿images = [adaptive_lightning_compensation(img) for img in images]# 转换为Tensorimages = [transforms.ToTensor()(img) for img in images]images = torch.stack(images)# 前向传播outputs = model(images)# 计算损失loss = compute_loss(outputs, targets)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()

2. 基于ArcFace损失函数优化FaceNet模型,LFW数据集准确率达到99.83%

LFW数据集介绍
LFW(Labeled Faces in the Wild)数据集是一个广泛用于人脸识别算法评估的公开数据集,包含来自不同种族、年龄、性别等人群的面部图像,用于测试人脸识别算法的准确性和鲁棒性。

ArcFace损失函数介绍
ArcFace是一种改进的人脸识别损失函数,通过在特征空间中引入角度裕度,使得不同类别的特征向量之间的区分度更大,从而提高模型的识别准确率。

FaceNet模型介绍
FaceNet是一种基于深度学习的人脸识别模型,通过将人脸图像映射到一个低维嵌入空间,使得同一人脸的嵌入向量在空间中更接近,不同人脸的嵌入向量则更分散。

当初选择基于ArcFace损失函数优化FaceNet模型的原因
ArcFace损失函数在特征学习方面具有优势,能够更好地拉大人脸特征之间的距离,提高模型的判别能力。结合FaceNet模型强大的特征提取能力,可以进一步提升人脸识别的准确率,尤其在LFW数据集这种具有挑战性的数据集上。

import torch
import torch.nn as nn
import torch.optim as optim
from facenet_pytorch import InceptionResnetV1# 定义ArcFace损失函数
class ArcFaceLoss(nn.Module):def __init__(self, num_classes, embedding_size, s=30.0, m=0.5):super(ArcFaceLoss, self).__init__()self.num_classes = num_classesself.embedding_size = embedding_sizeself.s = sself.m = mself.weight = nn.Parameter(torch.FloatTensor(num_classes, embedding_size))nn.init.xavier_uniform_(self.weight)def forward(self, embeddings, labels):cosine = torch.nn.functional.linear(torch.nn.functional.normalize(embeddings), torch.nn.functional.normalize(self.weight))cosine = torch.clamp(cosine, -1.0 + 1e-7, 1.0 - 1e-7)cosine.add_(torch.zeros_like(cosine).scatter_(1, labels.unsqueeze(1), -self.m))cosine.mul_(self.s)loss = torch.nn.functional.cross_entropy(cosine, labels)return loss# 加载FaceNet模型
model = InceptionResnetV1(pretrained='vggface2').train()# 定义损失函数和优化器
criterion = ArcFaceLoss(num_classes=num_classes, embedding_size=512)
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练循环
for epoch in range(num_epochs):for images, labels in train_loader:# 前向传播embeddings = model(images)loss = criterion(embeddings, labels)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()

3. 优化图像预处理流水线,单帧处理耗时从220ms降至68ms

优化具体过程

  • 多线程处理:将图像预处理的不同步骤分配到多个线程中执行,充分利用多核CPU的计算能力,提高处理效率。
  • 算法优化:对图像预处理中的关键算法进行优化,如采用更高效的图像缩放算法、减少不必要的计算操作等。
  • 内存管理:优化内存的分配和释放,减少内存碎片和内存拷贝的开销,提高数据传输的效率。

当初这么做的原因
在智能门禁系统中,实时性是非常重要的指标。降低单帧处理耗时可以提高系统的响应速度,提升用户体验,同时也有助于提高系统的整体性能和稳定性。

import cv2
import threading# 定义图像预处理函数
def preprocess_image(image):# 转换为灰度图gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 直方图均衡化eq = cv2.equalizeHist(gray)# 归一化normalized = eq / 255.0return normalized# 多线程处理图像
def process_frame(frame):# 创建线程thread = threading.Thread(target=preprocess_image, args=(frame,))thread.start()# 等待线程完成thread.join()return preprocess_image(frame)# 测试处理时间
import timestart_time = time.time()
for _ in range(100):frame = cv2.imread('frame.jpg')processed_frame = process_frame(frame)
end_time = time.time(<

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/42709.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言学习笔记(抱佛脚版)

毕业一年&#xff0c;发现记性是真的差&#xff0c;每次想起之前的知识总是想不全&#xff0c;看别人写的资料也懵懵懂懂。于是我索性自己再学一遍&#xff0c;并且记录一下。希望对你们也有所帮助。 正片开始&#xff01; 前面的什么if for都不难理解&#xff0c;嵌套的话也…

攻破tensorflow,勇创最佳agent(2)---损失(loss) 准确率(accuracy)问题

实战播: 怎么判定一个模型好不好,你设置的值对不对? 需要再看几个值: 例如: model Sequential()for units in model_structure:model.add(Dense(units, activationrelu))model.add(Dropout(train_config.get(dropout_rate, 0.3)))model.add(Dense(1, activationsigmoid)) 他…

Docker-Volume数据卷详讲

Docker数据卷-Volume 一&#xff1a;Volume是什么&#xff0c;用来做什么的 当删除docker容器时&#xff0c;容器内部的文件就会跟随容器所销毁&#xff0c;在生产环境中我们需要将数据持久化保存&#xff0c;就催生了将容器内部的数据保存在宿主机的需求&#xff0c;volume …

使用Selenium和lxml库搜房网爬取某地区房屋信息(python、pycharm爬虫)

一、地址&#xff1a; url "https://zb.newhouse.fang.com/house/s/b91" # 第一页的 URL 但是这个爬虫我不知道为啥总是翻不了页数&#xff0c;请帮忙修改一下~ 二、用到的知识点以及代码详解&#xff1a; 这段代码是一个使用Selenium和lxml库实现的网页爬虫&a…

ai画图comfyUI 精准定位gligen。允许指定图像中多个对象的位置和大小

基础功能下&#xff0c;outpainting是内容填充&#xff0c;拉近拉远镜头&#xff0c;自动填充旁边物体。嵌入模型也需要单独下载&#xff0c;演示完示例后推荐模型站有更直观效果介绍和用法。选中精确定位。看一眼坐标&#xff0c;直接默认出一张图。然后修改定位&#xff0c;和…

如何自动化同义词并使用我们的 Synonyms API 进行上传

作者&#xff1a;来自 Elastic Andre Luiz 了解如何使用 LLM 来自动识别和生成同义词&#xff0c; 使术语可以通过程序方式加载到 Elasticsearch 同义词 API 中。 提高搜索结果的质量对于提供高效的用户体验至关重要。优化搜索的一种方法是通过同义词自动扩展查询词。这样可以更…

boost.asio

as&#xff08;async&#xff09;:异步 同步io&#xff1a; reactor (非阻塞)&#xff08;需要注册一次&#xff0c;在等待消息时可以干别的事&#xff09; 阻塞io网络模型 接口&#xff1a;read\accept\connect\write 接口返回时&#xff0c;io完成 异步…

数据库后续

-- 添加作者字段 alter table t_hero add author varchar(100); -- 更新数据 update t_hero set author "曹雪芹" where id 1; update t_hero set author "曹雪芹" where id 2; update t_hero set author "曹雪芹" where id 3; upd…

计算机网络基础:网络流量工程与优化策略

计算机网络基础:网络流量工程与优化策略 一、前言二、网络流量工程基础2.1 网络流量工程的定义与目标2.2 网络流量的测量与分析2.2.1 常用的流量测量方法2.2.2 流量数据分析三、网络流量工程的优化策略3.1 链路负载均衡策略3.1.1 基于目的地址的负载均衡3.1.2 基于流量权重的负…

H5DS编辑器教程——H5页面触发动画实战指南

在 H5 页面设计中&#xff0c;触发动画通过动态交互提升用户体验&#xff0c;成为吸引注意力的关键手段。H5DS 编辑器作为一款高效的可视化工具&#xff0c;提供了丰富的动画制作功能&#xff0c;即使是零基础用户也能轻松实现专业级效果。 使用工具&#xff1a;H5DS编辑器 触…

什么是具身智能

具身智能&#xff08;Embodied Intelligence&#xff09;是人工智能与机器人学交叉的前沿领域&#xff0c;强调智能体通过身体与环境的动态交互实现自主学习和进化&#xff0c;其核心在于将感知、行动与认知深度融合‌。通俗地讲&#xff0c;就是机器人或者智能系统在物理环境中…

Java实现pdf中动态插入图片

今天接到一个需求&#xff0c;需要在pdf中的签名处&#xff0c;插入签名照片&#xff0c;但签名位置不固定&#xff0c;话不多说上代码&#xff1a; 1、首先引入itextpdf依赖包&#xff1a; <dependency><groupId>com.itextpdf</groupId><artifactId>…

MySQL8.4 InnoDB Cluster高可用集群使用指南

简介 高可用方案 Orchestrator&#xff1a; 可视化 Web 界面管理 MySQL 拓扑结构&#xff0c;并且兼容多种复制架构&#xff08;异步、半同步、GTID&#xff09;&#xff0c;提供自动和手动的故障转移。但是8.0.21后 MySQL 更新了主从复制相关命令&#xff0c;Orchestrator无…

从泛读到精读:合合信息文档解析如何让大模型更懂复杂文档

从泛读到精读&#xff1a;合合信息文档解析如何让大模型更懂复杂文档 一、引言&#xff1a;破解文档“理解力”瓶颈二、核心功能&#xff1a;合合信息的“破局”亮点功能亮点1&#xff1a;复杂图表的高精度解析图表解析&#xff1a;为大模型装上精准“标尺”表格数据精准还原 功…

git:远程仓库拉取到本地,fork到本地,修改后再上传

讲述仓库成员拉取远程仓库&#xff08;即组长的仓库&#xff0c;里面有成员&#xff09;到本地&#xff0c;修改内容再上传的详细步骤&#xff1a; 1.进入仓库&#xff0c;首先fork &#xff08;如不&#xff0c;所作操作会直接对远程仓库进行&#xff0c;不用管理员审核&…

windows清除电脑开机密码,可保留原本的系统和资料,不重装系统

前言 很久的一台电脑没有使用了&#xff0c;开机密码忘了&#xff0c;进不去系统 方法 1.将一个闲置u盘设置成pe盘&#xff08;注意&#xff0c;这个操作会清空原来u盘的数据&#xff0c;需要在配置前将重要数据转移走&#xff0c;数据无价&#xff0c;别因为配置这个丢了重…

频谱分析仪的最大保持功能

专门应用于例如遥控器之类的&#xff0c;按一下&#xff0c;一瞬间出现的信号的测量。 把仪器连接天线&#xff0c;观测空间中的一些信号&#xff0c;比如WIFI的信号&#xff0c;我们可以看到仪器接收到的信号其实是一直变化的&#xff0c;并不是每一次扫描都能扫到我们想要的这…

智能粉尘监测解决方案|守护工业安全,杜绝爆炸隐患

在厂房轰鸣的生产线上&#xff0c;一粒微小粉尘的聚集可能成为一场灾难的导火索。如何实现粉尘浓度的精准监控与快速响应&#xff1f;我们为您打造了一套"感知-预警-处置"全闭环的智能安全方案&#xff01; 行业痛点&#xff1a;粉尘管理的生死线 在金属加工、化工…

Excel处理控件Aspose.Cells指南:如何在不使用 Microsoft Excel 的情况下解锁 Excel 工作表

Microsoft Excel 允许用户使用密码保护工作表&#xff0c;以防止未经授权的更改。但是&#xff0c;在某些情况下&#xff0c;您可能需要在不使用 Microsoft Excel 的情况下解锁 Excel 工作表。在本指南中&#xff0c;我们将探讨解锁 Excel 工作表的不同方法&#xff0c;例如使用…

音乐webpack(通杀webpack-1)

本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;不提供完整代码&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 本文章未经许可…