分布式Redis(14)哈希槽

文章目录

  • 一致性哈希算法
    • 理论
    • 普通哈希的问题
    • 一致性hash算法
  • Redis 使用哈希槽
    • Redis Cluster集群
  • 为什么Redis是使用哈希槽而不是一致性哈希呢?
  • 为什么Redis Cluster哈希槽数量是16384?

关键词:一致性 Hash,哈希槽,

带着问题阅读

  1. 一致性 Hash 的增删节点操作原理
  2. 如何防止增删节点导致连接不平衡问题
  3. 哈希槽和一致性 Hash 的不同之处以及优点
  4. 哈希槽为什么使用 16384 个

一致性哈希算法

理论

一致性哈希算法是一种常用的分布式算法,其主要用途是在分布式系统中,将数据根据其键(key)进行散列(hash),然后将散列结果映射到环上,再根据数据节点的数量,将环划分为多个区间,每个节点负责处理环上一定区间范围内的数据。

普通哈希的问题

分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是集群管理最基本的功能。如果采用常用的hash(object)%N取模的方式,在节点进行添加或者删除后,需要重新进行迁移改变映射关系,否则可能导致原有的数据无法找到。

举个栗子
随着业务和流量的增加,假如我们的Redis查询服务节点扩展到了3个,为了将查询请求进行均衡,每次请求都在相同的Redis中,使用hv = hash(key) % 3的方式计算,对每次查询请求都通过hash值计算,得出来0、1 、2的值分别对应服务节点的编号,计算得到的hv的值就去对应的节点处理。
在这里插入图片描述

但是这里有个问题,服务增减是需要对此时的key进行重新计算,比如减少一个服务的时候,此时需要按 hv = hash(key) % 2计算,而增加一个服务节点的时候需要按hv = hash(key) % 4计算,而这种取模基数的变化会改变大部分原来的映射关系,导致数据查询不到
在这里插入图片描述

这个时候只能进行数据迁移,真是太麻烦了,而一致性哈希算法显然是一个更好选择!

一致性hash算法

一致性哈希同样使用了取模的方式,不同的是对 2^32 这个固定的值进行取模运算。
在使用一致哈希算法后,哈希表槽位数(大小)的改变平均只需要对 K/n 个关键字重新映射,其中K是关键字的数量, n是槽位数量,而不需要对所有的映射关系进行重新映射!

Hash环
我们可以把一致哈希算法是对 2^32 进行取模运算的结果值虚拟成一个圆环,环上的刻度对应一个 0~2^32 - 1 之间的数值,如下图:
在这里插入图片描述
节点入环

在这里插入图片描述
不平衡问题
我们通过新增节点和删除节点,知道了该方式会影响该节点的顺时针的后一个节点,其他节点不受影响。
但是因为生成哈希值的分布并不是均匀的,如下图新增k4、k5,如果节点B宕机了,k2和k4也迁移到节点C,导致那么大部分请求就落到节点C了,如果数量更多呢,此时会导致节点C压力陡增,这样就不均衡了!
在这里插入图片描述

那如何解决这个问题呢?那就是通过 虚拟节点
虚拟节点
虚拟节点 可以理解为是作为实际节点的一个copy,多个虚拟节点映射一个实际节点,因为在哈希环上节点越多就分布的越均匀,即使我们现实中不会有那么多真实节点。
在这里插入图片描述

上图中三个真实节点A、B、C,映射了9个虚拟节点,如果key值经过哈希落到临近A-1、A-2、A-3的虚拟节点,那么最终都将映射到真实节点A,你想如果虚拟节点再多点,是不是就会更均衡了!
假设真实节点A被移除,A对应虚拟节点也会移除,但是多虚拟节点方式可以映射更多真实节点,让剩余的节点更好得去承担节点变化的请求压力!
如下图:
在这里插入图片描述
这里简单讲解一下,图中真实节点A被移除,那么对应的虚拟节点移除,那么此时k1的重新映射到C-1、k3重新映射到B-3,也就是说被迁移到真实节点B和C,由此可见节点被移除会被更均衡的分散到其他节点上。图中只简单列举了几个虚拟节点,虚拟节点越多,相对会越均衡。

Redis 使用哈希槽

不知道朋友们记不记得Redis Cluster的实现,也是用了Hash的方式将键值按照一定算法分配到各个节点的,但是却没有使用一致性哈希算法,而是引入了哈希槽的概念!
这是为什么呢?我们先看下一致性哈希和哈希槽在计算上的区别
在这里插入图片描述
图中A、B、C表示的是三个节点,k1和k2表示的是key:一致性哈希是经过 hash() 函数计算后对 2^32 取模的值虚拟成一个圆环
哈希槽是将每个key通过CRC16计算得到一个16bit的值,然后16bit值再对16384取模来决定放置哪个槽
虽说在计算方式上有区别,好像都解决了数据均衡的问题,应该都是不错的选择。
OK,本文将先对Redis集群节点增减时如何进行哈希槽的分配进行分享,再回过头看为什么Redis 集群没有使用一致性hash,而是引入了哈希槽的概念的原因究竟是什么!

Redis Cluster集群

Redis集群是一种分布式数据库方案,通过服务器分片技术进行数据管理,我们来对它进行一个归纳总结。

哈希槽
集群将数据划分为 16384 (2^14)个槽位(哈希槽),每个Redis服务节点分配了一部分槽位,因为槽位的信息存储于每个节点中,客户端请求的key通过CRC16校验后对16384取模来决定放置哪个槽,这样也就定位到指定的节点中。
在这里插入图片描述
上图中 key 【小许】和【code】经过 CRC16 计算后再对哈希槽总个数 16384 取模,得到哈希槽位置分别是在888的节点A上和10924的节点C上面。
重点:每个节点都会记录哪些槽分配给了自己,哪些槽被分配给了其他节点

增加节点

新增一个节点D,redis cluster的这种做法是从各个节点的前面各拿取一部分slot(槽)到D上,会变成这样:
在这里插入图片描述
此时服务A、B、C、D通过分配各自有了对应的哈希槽,新增节点后集群会自动进行哈希槽的重新平均分配,比如上图中四个节点中每个节点的槽位数是:18384 / 4 = 4096。
当然这个你使用命令 【cluster addslots】为每个节点自定义分配槽的数量,这里有个特点,如果我们节点的机器性能有差异,那就可以为性能好的,配置更多槽位,更好的利用机器性能。

减少节点
如果减少一个节点C,redis cluster同样会自动进行槽数量的重新计算分配,然后后变成下面样子:
在这里插入图片描述
删除节点C之后,此时服务A、B节点中每个节点的槽位数是:18384 / 2 = 8192

客户端访问节点数据
Redis cluster的主节点各自负责一部分槽,我们来看下来自客户端的请求的key是如何定位到具体的节点,然后返回对应的数据的。
在这里插入图片描述
来自Redis-Cli客户端的请求连接到的是集群中的任何一个节点
● 首先检查当前key是否存在集群中的节点
● 通过CRC16(key)/ 16384计算出slot
● 查询负责该slot负责的节点是否存在
● 在该节点的话就直接就直接返回key对应的结果
● 不在该节点的话,那么会 MOVED重定向(包含槽位和目标地址)指引客户端转向至正确的节点,并再次发送之前执行的命令

为什么Redis是使用哈希槽而不是一致性哈希呢?

有人可能会说是当节点太少时,一致性哈希容易数据分布不均匀更容易导致雪崩。
但是看过我开头分享的一致性哈希文章,通过引入虚拟节点是基本可以避免这个问题的
如果非要说极限情况,那么Redis哈希槽,也有可能某些hash 区间的值特别多,然后导致该节点导访问过于集中的问题。
抛开这些极端情况,通过上面对哈希槽的总结,以下这些是更值得信服的回答:

  • 当发生扩容时候,Redis可配置映射表的方式让哈希槽更灵活,可更方便组织映射到新增server上面的slot数,比一致性hash的算法更灵活方便。
  • 在数据迁移时,一致性hash 需要重新计算key在新增节点的数据,然后迁移这部分数据,哈希槽则直接将一个slot对应的数据全部迁移,实现更简单
  • 可以灵活的分配槽位,比如性能更好的节点分配更多槽位,性能相对较差的节点可以分配较少的槽位

为什么Redis Cluster哈希槽数量是16384?

我们知道一致性哈希算法是对2的32次方取模,而哈希槽是对2的14次方取模
Redis作者认为这样做不太值得;并且一般情况下一个redis集群不会有超过1000个master节点,所以16k的槽位是个比较合适的选择。
Redis作者的回答在这里:why redis-cluster use 16384 slots? · Issue #2576 · redis/redis
在这里插入图片描述
总结起来主要有以下因素

  • Redis节点间通信时,心跳包会携带节点的所有槽信息,它能以幂等方式来更新配置。如果采用 16384 个插槽,占空间 2KB (16384/8);如果采用 65536 个插槽,占空间 8KB (65536/8)。
  • Redis Cluster 不太可能扩展到超过 1000 个主节点,太多可能导致网络拥堵。
  • 16384 个插槽范围比较合适,当集群扩展到1000个节点时,也能确保每个master节点有足够的插槽
    这也就是为什么哈希槽的数量是16384了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427419.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS 巨魔神器,Geranium 天竺葵:6大功能,个个都解决痛点

嘿,这是黑猫。如果你装了巨魔,却只知道安装第三方APP,那就是暴殄天物。巨魔的价值不仅是应用侧载,还有强大的玩机工具生态——这也是我花费大量时间,去制作巨魔精选IPA合集的原因。 通过巨魔商店安装的APP&#xff0c…

SQL优化-MySQL Explain中出现Select tables optimized away

文章目录 前言相关解释总结 前言 今天在做SQL优化的时候,在使用explain执行SQL时,出现了以下情况: EXPLAIN SELECT m1.id from station m1 INNER JOIN site s ON m1.codes.stationcode where receivetime(SELECT MAX(m2.receivetime) FROM…

Python爱心射线(完整代码)

目录 系列目录 写在前面​ 完整代码 下载代码 代码分析 写在后面 系列目录 序号直达链接表白系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3

springsecurity+jwt实现前后端分离认证授权

文章目录 1.简介2.快速入门3.认证3.1登录校验流程3.2原理初探3.3认证详流程详解3.4 分析UsernamePasswordAuthenticationFilter 4.案例实战4.1 思路分析4.2准备工作4.3实战1.数据库校验用户2.核心代码1.创建UserDetailsService实现类2.创建UserDetails实现类3.密码加密存储模式…

ClickHouse的安装配置+DBeaver远程连接

1、clickhouse的下载: 先去clickhouse官网进行下载,继续往下翻找文档,将DBeaver也下载下来 下载地址:https://packages.clickhouse.com/rpm/stable/ 下载这个四个rpm包 2、上传rmp文件到Linux中 自己创建的一个clickhouse-ins…

Linux文件IO(一)-open使用详解

在 Linux 系统中要操作一个文件,需要先打开该文件,得到文件描述符,然后再对文件进行相应的读写操作(或其他操作),最后在关闭该文件;open 函数用于打开文件,当然除了打开已经存在的文…

优化算法(四)—蚁群算法(附MATLAB程序)

蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的优化算法,由Marco Dorigo于1990年提出。它利用了蚂蚁在寻找食物的过程中通过释放信息素来相互影响的机制,以找到最优解或接近最优解。蚁群算法特别适用于解决组合…

【高级编程】网络编程 基于 TCPUDP 协议的 Socket 编程

文章目录 IP地址Socket基于 TCP 协议的 Socket 编程基于 UDP 协议的 Socket 编程 IP地址 IP地址(Internet Protocol):唯一标识网络上的每一台计算机 IP地址的组成:32位,由4个8位二进制数组成 11000000.10101000.000…

C++ 赋值运算符重载

个人主页:Jason_from_China-CSDN博客 所属栏目:C系统性学习_Jason_from_China的博客-CSDN博客 所属栏目:C知识点的补充_Jason_from_China的博客-CSDN博客 概念概述 赋值运算符重载的特点: 成员函数:赋值运算符重载必须…

IPv6(三)

文章目录 IPv6报文 IPv6报文 IPv6基本报头有8个字段,固定大小为40字节,,每个IPv6数据都必须包含报头,基本报头提供报文转发的基本信息,会被转发路径上面的所有路由器解析 IPv6报头长度为40字节Version:版本…

leetcode21. 合并两个有序链表

思路: 用一个新链表来表示合并后的有序链表, 每次比较两个链表,将较小的那个结点存储至新链表中 # Definition for singly-linked list. # class ListNode(object): # def __init__(self, val0, nextNone): # self.val val # …

sheng的学习笔记-AI-归纳逻辑程序设计(ILP)

AI目录:sheng的学习笔记-AI目录-CSDN博客 规则学习(rule learning): sheng的学习笔记-AI-规则学习(rule learning)-CSDN博客 一阶规则学习: sheng的学习笔记-AI-FOIL(First-Order Inductive Learner)-CSD…

什么是 SSL 代理?

您可能已经对代理有所了解,例如移动代理、住宅代理和数据中心代理之间的区别。但是 SSL 代理到底是什么?它与其他类型的代理相比有何不同? 让我们分析一下,看看 SSL 代理有何特殊之处。 1.什么是 SSL/HTTPS 代理? SS…

《高等代数》分块矩阵(应用)

说明:此文章用于本人复习巩固,如果也能帮助到大家那就更加有意义了。 注:1)利用分块矩阵的相关公式进行证明

[PTA]7-5 求组合数

[PTA]7-5 求组合数 输入格式: 输入在一行中给出两个正整数m和n&#xff08;m≤n&#xff09;&#xff0c;以空格分隔。 输出格式: 按照格式“result 组合数计算结果”输出。题目保证结果在double类型范围内。 输入样例: 2 7 输出样例: result 21 代码 #include<stdio…

【Linux进程控制】进程程序替换

目录 进程程序替换 替换函数 看现象 替换原理 多进程替换 exec*函数使用&#xff08;部分&#xff09;&#xff0c;并且认识函数参数的含义 1.execl 2.execv 3.execvp 4.execvpe execlp 和execlpe 替换函数总结 进程程序替换 替换函数 有六种以exec开头的函数&am…

unity将多层嵌套的结构体与json字符串相互转化

定义多个结构体&#xff0c;将结构体内容输入到最终的JObject中&#xff0c;然后将其转为字符串打印出来&#xff0c;即可。 代码内容如下&#xff1a; using Newtonsoft.Json; using Newtonsoft.Json.Linq; using UnityEngine;public class Test : MonoBehaviour {private Ap…

3.接口测试的基础/接口关联(Jmeter工具/场景一:我一个人负责所有的接口,项目规模不大)

一、Jmeter接口测试实战 1.场景一&#xff1a;我一个人负责所有的接口&#xff1a;项目规模不大 http:80 https:443 接口文档一般是开发给的&#xff0c;如果没有那就需要抓包。 请求默认值&#xff1a; 2.请求&#xff1a; 请求方式:get,post 请求路径 请求参数 查询字符串参数…

二分算法——优选算法

个人主页&#xff1a;敲上瘾-CSDN博客 个人专栏&#xff1a;游戏、数据结构、c语言基础、c学习、算法 本章我们来学习的是二分查找算法&#xff0c;二分算法的应用非常广泛&#xff0c;不仅限于数组查找&#xff0c;还可以用于解决各种搜索问题、查找极值问题等。在数据结构和算…

web - JavaScript

JavaScript 1&#xff0c;JavaScript简介 JavaScript 是一门跨平台、面向对象的脚本语言&#xff0c;而Java语言也是跨平台的、面向对象的语言&#xff0c;只不过Java是编译语言&#xff0c;是需要编译成字节码文件才能运行的&#xff1b;JavaScript是脚本语言&#xff0c;不…