算法.图论-并查集上

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427461.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1 elasticsearch安装

【0】官网参考 https://www.elastic.co/guide/en/elasticsearch/reference/7.11/targz.html 【1】Centos7 下载安装 【1.1】下载 官网&#xff1a;Download Elasticsearch | Elastic 选择好自己想要的相关版本即可&#xff1b; 【2】Centos7.X 前置环境配置&#xff08;uli…

秦时明月6.2魔改版+GM工具+虚拟机一键端

今天给大家带来一款单机游戏的架设&#xff1a;秦时明月。 另外&#xff1a;本人承接各种游戏架设&#xff08;单机联网&#xff09; 本人为了学习和研究软件内含的设计思想和原理&#xff0c;带了架设教程仅供娱乐。 教程是本人亲自搭建成功的&#xff0c;绝对是完整可运行…

【Vmware16安装教程】

&#x1f4d6;Vmware16安装教程 ✅1.下载✅2.安装 ✅1.下载 官网地址&#xff1a;https://www.vmware.com/ 百度云盘&#xff1a;Vmware16下载 123云盘&#xff1a;Vmware16下载 ✅2.安装 1.双击安装包VMware-workstation-full-16.1.0-LinuxProbe.Com.exe&#xff0c;点击…

最新动态一致的文生视频大模型FancyVideo部署

FancyVideo是一个由360AI团队和中山大学联合开发并开源的视频生成模型。 FancyVideo的创新之处在于它能够实现帧特定的文本指导&#xff0c;使得生成的视频既动态又具有一致性。 FancyVideo模型通过精心设计的跨帧文本引导模块&#xff08;Cross-frame Textual Guidance Modu…

C#和数据库高级:抽象类和抽象方法

文章目录 一、为什么使用抽象类和抽象方法&#xff1f;1.1、父类与子类的相互转换 二、抽象类和抽象方法2.1、抽象类的定义和方法声明规范2.2、使用继承多态的机制解决问题 三、抽象类的概念和使用特点总结 一、为什么使用抽象类和抽象方法&#xff1f; 1.1、父类与子类的相互…

考研数据结构——C语言实现有向图邻接矩阵

首先&#xff0c;定义了一些基本的数据结构和常量&#xff1a; VertexType&#xff1a;顶点的数据类型&#xff0c;这里定义为char。EdgeType&#xff1a;边的数据类型&#xff0c;这里定义为int&#xff0c;用于存储权重。MAXVEX&#xff1a;定义了图中最大顶点数为100。INFIN…

C语言——自定义类型

目录 结构体 概念 结构体变量的创建和初始化 结构体的自引用 结构体的内存对齐 内存对齐存在的原因 合理设计结构体 方法一 方法二 结构体传参 结构体实现位段 什么是位段 位段的内存分配 位段的跨平台问题 注意 联合体 概念 验证 优点 小应用 什么是大小…

【Unity】对象池 - 未更新完

自定义泛型对象池 文章目录 自定义泛型对象池封装泛型类例子 使用Unity自带对象池 封装泛型类 public abstract class MyPool<T> : MonoBehaviour where T :Component {[SerializeField] protected T prefab; // 生成的预制体[SerializeField] protected int defaultNum…

鸿蒙环境服务端签名直传文件到OSS

本文介绍如何在鸿蒙环境下将文件上传到OSS。 背景信息 鸿蒙环境是当下比较流行的操作环境&#xff0c;与服务端签名直传的原理类似&#xff0c;鸿蒙环境上传文件到OSS是利用OSS提供的PutObject接口来实现文件上传到OSS。关于PutObject的详细介绍&#xff0c;请参见PutObject。…

VMware安装飞牛私有云fnOS并挂载小雅Alist实现异地远程访问

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

记一次键盘f2和f5键被自动触发情况

背景&#xff1a; 联想小新笔记本电脑内置键盘&#xff0c;其中f2键和f5键一直被自动触发&#xff0c;已尝试过更换输入法&#xff0c;重装系统&#xff0c;拆开键帽清灰依旧无效。考虑维修费或者更换键盘&#xff08;内置&#xff09;费都挺贵的&#xff0c;而且f2和f5作用也…

Unity教程(十六)敌人攻击状态的实现

Unity开发2D类银河恶魔城游戏学习笔记 Unity教程&#xff08;零&#xff09;Unity和VS的使用相关内容 Unity教程&#xff08;一&#xff09;开始学习状态机 Unity教程&#xff08;二&#xff09;角色移动的实现 Unity教程&#xff08;三&#xff09;角色跳跃的实现 Unity教程&…

2024java面试-软实力篇

为什么说简历很重要&#xff1f; 一份好的简历可以在整个申请面试以及面试过程中起到非常好的作用。 在不夸大自己能力的情 况 下&#xff0c;写出一份好的简历也是一项很棒的能力。为什么说简历很重要呢&#xff1f; 、 先从面试来说 假如你是网申&#xff0c;你的简历必然…

论文阅读-《Attention is All You Need》

注意力就是一切 【要点】&#xff1a;论文提出了一种全新的网络架构——Transformer&#xff0c;完全基于注意力机制&#xff0c;无需使用循环和卷积&#xff0c;实现了在机器翻译任务上的性能提升和训练效率的显著提高。 【方法】&#xff1a;通过构建一个仅使用注意力机制的…

【计算机网络 - 基础问题】每日 3 题(十三)

✍个人博客&#xff1a;Pandaconda-CSDN博客 &#x1f4e3;专栏地址&#xff1a;http://t.csdnimg.cn/fYaBd &#x1f4da;专栏简介&#xff1a;在这个专栏中&#xff0c;我将会分享 C 面试中常见的面试题给大家~ ❤️如果有收获的话&#xff0c;欢迎点赞&#x1f44d;收藏&…

cadence SPB17.4 - allegro - 用板子外形创建整板铺铜

文章目录 cadence SPB17.4 - allegro - 用板子外形创建整板铺铜概述笔记先确定自己板子的 board Geometry/Design_Outline 是否有外形shape为了将软件提示看得更清楚&#xff0c;在每个操作之前&#xff0c;先将命令提示区内容先删了用Z-copy从外形层生成整板的铺铜备注END cad…

【JS】postMessage与MessageChannel

前言 postMessage 和 MessageChannel 都是用来实现跨文档、跨窗口或跨线程&#xff08;Web Worker&#xff09;的消息传递机制。 postMessage 可以在 iframe、同源或跨源窗口之间传递数据&#xff0c;也可以用于主线程与 Web Worker 之间的通信。 postMessage 是一种单向的…

数据结构-3.1.栈的基本概念

一.栈的定义&#xff1a; 栈和线性表的区别&#xff1a;栈只能在表尾一端进行插入或者删除的操作&#xff0c;而线性表可以在任意一个地方进行插入或者删除 二.有关栈的关键术语&#xff1a; 三.栈的基本操作&#xff1a; 1.回顾线性表的基本操作&#xff1a; 2.栈的基本操作&…

佰朔资本:国内海风加速招标 船舶行业景气上行

昨日&#xff0c;沪指盘中一度下探失守2700点&#xff0c;尾盘在地产、银行等板块的带动下发力上扬&#xff0c;深证成指亦翻红。到收盘&#xff0c;沪指涨0.49%报2717.28点&#xff0c;深证成指涨0.11%报7992.25点&#xff0c;创业板指跌0.11%报1533.47点&#xff0c;上证50指…

商业终端架构技术-未来之窗行业应用跨平台架构

未来之窗行业应用跨平台架构 以下是对未来之窗行业应用跨平台架构中客户端的稳定优势和网页跨平台性质的扩展列举&#xff1a; 一、客户端的稳定优势&#xff1a; 1. 离线可用性 - 即使在没有网络连接的…