优化算法(三)—模拟退火算法(附MATLAB程序)

模拟退火算法(Simulated Annealing, SA)是一种基于概率的优化算法,旨在寻找全局最优解。该算法模拟金属退火过程中的物质冷却过程,逐渐降低系统的“温度”以达到全局优化的效果。它特别适用于解决复杂的组合优化问题。

一、模拟退火算法基本原理

模拟退火算法(Simulated Annealing, SA)是一种用于寻找复杂优化问题的全局最优解的随机优化算法。其基本原理可以通过以下几个核心概念和步骤来理解:

  • 模拟退火过程: 模拟退火算法受到金属退火过程的启发。金属在加热到高温后逐渐冷却,冷却过程中的原子在晶格中找到低能量的最稳定配置。类似地,模拟退火算法在解空间中进行搜索,从高温状态开始,逐渐降低温度,使解趋向于全局最优解。

  • 接受准则: 在搜索过程中,算法不仅接受当前解的邻域解,还允许接受较差的解,以避免陷入局部最优。接受较差解的概率与当前温度有关。这种接受准则可以通过以下公式描述:

其中,\Delta E是新解和当前解之间目标函数值的差(新解目标函数值 - 当前解目标函数值),T 是当前温度。

二、模拟退火算法基本公式推导

模拟退火算法的核心在于通过接受准则来决定是否接受一个新的解,即使这个新解在目标函数上可能更差。这个过程的数学基础可以追溯到统计物理中的Boltzmann分布。下面是模拟退火算法公式的详细推导过程。

2.1Boltzmann 分布

在物理学中,Boltzmann分布用于描述粒子在不同能量状态下的概率分布。对于一个能量为 E 的状态,在温度 T 下,其出现的概率为:

其中 k 是玻尔兹曼常数,Z是配分函数(用于归一化的常数),确保所有概率之和为1。

2.2目标函数与能量

在模拟退火算法中,目标函数 f\left ( x \right )可以看作是“能量”,即我们希望最小化的值。因此,假设当前解的目标函数值为E\left ( x \right ),新解的目标函数值为 E\left ( {x }'\right ),则能量差为:

2.3接受准则

我们希望模拟退火算法能够在搜索过程中避免局部最优解,找到全局最优解。为此,我们需要决定是否接受一个新解 {x}',即使它的目标函数值比当前解x差。我们引入一个接受准则,使得在温度较高时,接受较差解的概率较大,而在温度降低时,接受较差解的概率减少。

根据Boltzmann分布的思想,我们可以用以下概率公式来决定是否接受一个新解{x}'

接受新解的概率(如果新解的目标函数值较差):

其中 T 是当前温度,\Delta E 是新解的目标函数值与当前解的目标函数值之差。这个公式是根据Boltzmann分布的形式推导出来的。

2.4温度更新

模拟退火算法中的温度 T 随时间逐渐降低,以模拟物理退火过程中的冷却。常用的温度更新公式为指数衰减:

温度更新公式

其中 0< \alpha < 1 是冷却率。这个公式表示温度在每一步迭代后乘以一个常数因子 \alpha,使得温度逐渐降低。

注意:

  1. 接受准则公式:其中,E(x)和 E(x′)分别为当前解和新解的目标函数值,T 是当前温度。

  2. 温度更新公式T_{next}=\alpha T 其中,\alpha是冷却率,通常 0< \alpha < 1

模拟退火算法利用这些公式在解空间中进行搜索,平衡全局探索和局部优化,逐步找到全局最优解。

三、MATLAB程序仿真

下面是一个用 MATLAB 实现的模拟退火算法的示例程序。这个示例使用模拟退火算法来解决一个简单的优化问题。假设我们要最小化目标函数f\left ( x \right ),你可以根据具体的问题调整目标函数和参数设置。

% 模拟退火算法 MATLAB 示例程序
% 目标:最小化目标函数 f(x)% 目标函数定义(这里以一个简单的二次函数为例)
objectiveFunction = @(x) x^2 - 4*x + 4; % f(x) = (x-2)^2% 参数设置
T0 = 100;       % 初始温度
Tmin = 1e-10;   % 最低温度
alpha = 0.95;   % 冷却率
maxIter = 1000; % 最大迭代次数% 初始化
x_current = randn(); % 初始解
f_current = objectiveFunction(x_current); % 初始目标函数值
T = T0; % 初始温度% 存储最优解
x_best = x_current;
f_best = f_current;% 模拟退火主循环
for iter = 1:maxIter% 生成邻域解x_new = x_current + randn(); % 在当前解附近随机生成新解f_new = objectiveFunction(x_new);% 计算目标函数值的差deltaF = f_new - f_current;% 决定是否接受新解if deltaF < 0 % 如果新解更优,直接接受x_current = x_new;f_current = f_new;else% 按概率接受较差解if rand < exp(-deltaF / T)x_current = x_new;f_current = f_new;endend% 更新最优解if f_current < f_bestx_best = x_current;f_best = f_current;end% 温度更新T = alpha * T;% 打印当前迭代信息fprintf('Iter: %d, x: %.4f, f(x): %.4f, T: %.4f\n', iter, x_current, f_current, T);% 检查是否达到停止温度if T < Tminbreak;end
end% 输出最优解
fprintf('最优解: x = %.4f, f(x) = %.4f\n', x_best, f_best);

代码说明

  1. 目标函数:

    • objectiveFunction 是我们要最小化的函数。在这个示例中,我们使用了一个简单的二次函数f\left ( x \right )=\left ( x-2 \right )^{^{2}}。你可以根据具体问题修改这个函数。
  2. 参数设置:

    • T0 是初始温度。
    • Tmin 是最低温度,算法在温度低于这个值时停止。
    • alpha 是冷却率,控制温度的下降速度。
    • maxIter 是最大迭代次数。
  3. 初始化:

    • x_current 是初始解。
    • f_current 是初始解的目标函数值。
    • T 是当前温度。
  4. 模拟退火主循环:

    • 在每次迭代中,生成一个新的解 x_new,计算其目标函数值 f_new
    • 根据目标函数值差 deltaF 和当前温度决定是否接受新解。
    • 更新当前解为新解(如果接受),并更新最优解。
    • 按冷却率 alpha 更新温度 T
    • 打印当前迭代的信息,包括当前解、目标函数值和温度。
  5. 输出:

    • 最终输出找到的最优解和对应的目标函数值。

这个示例程序展示了如何用模拟退火算法解决简单的优化问题。对于实际应用中的更复杂问题,你需要调整目标函数和参数设置,并可能需要设计更复杂的邻域解生成机制。

四、总结

模拟退火算法的基本原理是通过模拟金属退火过程中的加热和冷却来寻找最优解。它结合了随机搜索和概率接受机制,使得算法在解空间中既有广泛的探索能力,又能逐渐集中于最优解。

优化算法算法以往链接:

优化算法(一)—遗传算法(Genetic Algorithm)附MATLAB程序_matlab遗传算法程序-CSDN博客

优化算法(二)—粒子群优化算法(附MATLAB程序)-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427678.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[羊城杯 2020]Blackcat1

知识点&#xff1a;数组加密绕过 进入页面熟悉的web三部曲&#xff08;url地址&#xff0c;web源代码&#xff0c;web目录扫描&#xff09; url地址没有什么东西去看看源代码. 这有一个mp3文件点一下看看. 在最后面发现了 PHP源码. if(empty($_POST[Black-Cat-Sheriff]) || em…

Android Studio报错: Could not find pub.devrel:easypermissions:0.3.0, 改用linux编译

在Android studio中去编译开源的仓库&#xff0c;大概率就是各种编译不过&#xff0c;一堆错误&#xff0c;一顿改错&#xff0c;基本上会耗费非常多时间&#xff0c;比如&#xff1a; 这个就是改gradle版本&#xff0c;改成7.2 &#xff0c;修改完成之后&#xff0c;还有其他报…

翻页时钟 2.0-自动置顶显示,点击小时切换显示标题栏不显示标题栏-供大家学习研究参考

更新内容 自动置顶显示点击小时切换显示标题栏&#xff0c;&#xff08;显示标题栏后可移动时钟位置&#xff0c;鼠标拖动边框调整时钟大小&#xff09;不显示标题栏时&#xff0c;透明部分光标可穿透修正一个显示bu 下载地址&#xff1a; https://download.csdn.net/download…

iPhone 16系列:熟悉的味道,全新的体验

来看看iPhone 16和Plus这两个新成员&#xff0c;实话说&#xff0c;它们和之前曝光的样子几乎完全一致。下面我们就一起来细数一下这次的几大变化吧。 外观设计&#xff1a;焕然一新 首先&#xff0c;最显眼的变化就是后置镜头模组的布局调整为了垂直排列。这一改变使得整个背…

小程序开发设计-第一个小程序:安装开发者工具③

上篇文章导航&#xff1a; 小程序开发设计-第一个小程序&#xff1a;注册小程序开发账号②-CSDN博客https://blog.csdn.net/qq_60872637/article/details/142219035?spm1001.2014.3001.5501 须知&#xff1a;不同版本选项有所不同&#xff0c;并无大碍。 第一个小程序&#…

《黑神话悟空》开发框架与战斗系统解析

本文主要围绕《黑神话悟空》的开发框架与战斗系统解析展开 主要内容 《黑神话悟空》采用的技术栈 《黑神话悟空》战斗系统的实现方式 四种攻击模式 连招系统的创建 如何实现高扩展性的战斗系统 包括角色属性系统、技能配置文件和逻辑节点的抽象等关键技术点 版权声明 本…

中国书法—孙溟㠭浅析碑帖《爨宝子碑》

中国书法——孙溟㠭浅析碑帖《爨宝子碑》 《爨宝子碑》 全称是《晋故振威将军建宁太守爨宝子之墓》&#xff0c;此碑刻于东晋大亨四年&#xff08;公元405年&#xff09;属楷书体。 《爨宝子碑》 《爨宝子碑》 至清朝乾隆四十三年&#xff08;1778年&#xff09;在云南南宁&…

【开源免费】基于SpringBoot+Vue.JS网上购物商城(JAVA毕业设计)

本文项目编号 T 041 &#xff0c;文末自助获取源码 \color{red}{T041&#xff0c;文末自助获取源码} T041&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析5.4 用例设计 六、核…

PHP邮箱系统:从入门到实战搭建教程指南!

PHP邮箱系统配置教程&#xff1f;如何选用合适的PHP邮箱系统库&#xff1f; 为了满足个性化和定制化的需求&#xff0c;许多开发者选择使用PHP来搭建自己的邮箱系统。AokSend将带你从入门到实战&#xff0c;详细介绍如何搭建一个功能完善的PHP邮箱系统。 PHP邮箱系统&#xf…

C#软键盘设计字母数字按键处理相关事件函数

应用场景&#xff1a;便携式设备和检测设备等小型设备经常使用触摸屏来代替键盘鼠标的使用&#xff0c;因此在查询和输入界面的文本或者数字输入控件中使用软件盘来代替真正键盘的输入。 软键盘界面&#xff1a;软键盘界面实质上就是一个普通的窗体上面摆放了很多图片按钮&…

Golang | Leetcode Golang题解之第416题分割等和子集

题目&#xff1a; 题解&#xff1a; func canPartition(nums []int) bool {n : len(nums)if n < 2 {return false}sum, max : 0, 0for _, v : range nums {sum vif v > max {max v}}if sum%2 ! 0 {return false}target : sum / 2if max > target {return false}dp …

对象检测边界框损失 – 从IOU到ProbIOU

1.概述 目标检测损失函数的选择在目标检测问题建模中至关重要。通常&#xff0c;目标检测需要两个损失函数&#xff0c;一个用于对象分类&#xff0c;另一个用于边界框回归&#xff08;BBR&#xff09;。本文将重点介绍 IoU 损失函数&#xff08;GIoU 损失、DIoU 损失和 CIoU 损…

一、Numpy使用

1、numpy的简单使用 import numpy as np #利用as给numpy起一个别名np# 使用array来承接这个数组 array np.array([[1,2,3],[2,3,4]])print(array) print("number of dim:", array.ndim) # ndim 数组维度 print("shape:", array.shape) # 数组的形…

Spring Boot从0到1 -day02

目录 学习目标Spring Boot 的基本配置启动类与核心注解SpringBootApplicationSpring Boot 的全局配置文件1. application.properties2. application.ymlSpring 中Spring Boot Application注解的作用 自动配置原理1. 自动配置类2. 自动配置的发现示例3. 自定义自动配置 条件注解…

Prompt最佳实践|指定输出的长度

在OpenAI的官方文档中已经提供了[Prompt Enginerring]的最佳实践&#xff0c;目的就是帮助用户更好的使用ChatGPT 编写优秀的提示词我一共总结了9个分类&#xff0c;本文讲解第6个分类&#xff1a;指定输出长度 提供更多的细节要求模型扮演角色使用分隔符指定任务步骤提供样例…

Swagger 概念和使用以及遇到的问题

前言 接口文档对于前后端开发人员都十分重要。尤其近几年流行前后端分离后接口文档又变 成重中之重。接口文档固然重要,但是由于项目周期等原因后端人员经常出现无法及时更新&#xff0c; 导致前端人员抱怨接口文档和实际情况不一致。 很多人员会抱怨别人写的接口文档不…

从黎巴嫩电子通信设备爆炸看如何防范网络电子袭击

引言&#xff1a; 在当今数字化时代&#xff0c;电子通信设备已成为我们日常生活中不可或缺的一部分。然而&#xff0c;近期黎巴嫩发生的电子设备爆炸事件提醒我们&#xff0c;这些设备也可能成为危险的武器。本文将深入探讨电子袭击的原理、防范措施&#xff0c;以及网络智能…

【论文阅读】Face2Diffusion for Fast and Editable Face Personalization

code&#xff1a;mapooon/Face2Diffusion: [CVPR 2024] Face2Diffusion for Fast and Editable Face Personalization https://arxiv.org/abs/2403.05094 (github.com) 论文 介绍 目标&#xff1a;向 T2I 模型不知道的图像中插入特定概念&#xff08;例如某人的脸&#xff…

极狐GitLab 重要安全版本:17.3.3, 17.2.7, 17.1.8, 17.0.8, 16.11.10

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料&#xff1a; 极狐GitLab 官网极狐…

通过logstash同步elasticsearch数据

1 概述 logstash是一个对数据进行抽取、转换、输出的工具&#xff0c;能对接多种数据源和目标数据。本文介绍通过它来同步elasticsearch的数据。 2 环境 实验仅仅需要一台logstash机器和两台elasticsearch机器&#xff08;elasticsearch v7.1.0&#xff09;。本文用docker来模…