Prompt最佳实践|指定输出的长度

在OpenAI的官方文档中已经提供了[Prompt Enginerring]的最佳实践,目的就是帮助用户更好的使用ChatGPT

编写优秀的提示词我一共总结了9个分类,本文讲解第6个分类:指定输出长度

  • 提供更多的细节
  • 要求模型扮演角色
  • 使用分隔符
  • 指定任务步骤
  • 提供样例
  • 指定输出长度
  • 提供参考文本
  • 复杂任务拆分成子任务
  • 给GPT足够的时间思考

本文主要针对指定输出长度进行展开讲解

一、什么是指定输出长度

想象一个场景,你是一位面试官,你每天要面试无数的人,所以你一般一个人只给30分钟的面试时间,但是你发现很多时候有些面试人员仅仅是自我介绍就花费5分钟左右的时间。你觉得这样不行,于是你在每一次要求面试人员自我介绍时,都会加一句:“请在2分钟内介绍下你自己”。

对于大模型也是同样的道理,我们平时让他写总结,写引言,写观点,如果你不加约束,他们就会按照自己的想法进行输出,很多时候可能不符合你的预期。所以我们在写Prompt的时候,如有需求,可以提前加上对长度的要求。

二、如何指定输出长度

这里不要狭隘的任务输出长度就是文本的长度,它可以有多种维度,一般常用的有:

  • 词数/字数:比如公众号的摘要要求是100字,所以在生成摘要的时候需要告诉大模型,请讲字数控制在100以内
  • 例子数/要点数:我们经常会让ChatGPT针对某一场景帮我们想一些例子,这个时候我们一般都有例子个数的预期,所以我们会告诉ChatGPT帮我举1个例子
  • 句子数或段落数:可以通过句子数或者段落数来优化文章的组织结构

三、指定长度一定会生效么

答案是否定的,接下来我们通过几个例子来看下ChatGPT的表现

3.1 无中生有指定字数

使用GPT3.5 生成 你会发现我要求是20个字符,但是生成了30个字

image.png

3.2 叠加句子和字数约束

针对3.1的案例,我们可以进一步进行约束,不仅约束字数,还要约束句子image.png

3.3 对既有文本的概括

另外一种场景是针对你提供文本的概括,这种情况下,大模型表现也不错。image.png

四、总结

指定输出长度是一个非常简单的策略,但是需要注意的是:该策略并不是一直有效。如果需要严格有效,可以叠加更多的约束,比如同时约束句子和字数。同时大模型对于既有文本的概括相对效果会更好


最后如果您也对AI大模型感兴趣想学习却苦于没有方向👀
小编给自己收藏整理好的学习资料分享出来给大家💖

请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉如何学习AI大模型?👈

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
在这里插入图片描述

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
在这里插入图片描述

四、AI大模型商业化落地方案

在这里插入图片描述

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/427651.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Swagger 概念和使用以及遇到的问题

前言 接口文档对于前后端开发人员都十分重要。尤其近几年流行前后端分离后接口文档又变 成重中之重。接口文档固然重要,但是由于项目周期等原因后端人员经常出现无法及时更新, 导致前端人员抱怨接口文档和实际情况不一致。 很多人员会抱怨别人写的接口文档不…

从黎巴嫩电子通信设备爆炸看如何防范网络电子袭击

引言: 在当今数字化时代,电子通信设备已成为我们日常生活中不可或缺的一部分。然而,近期黎巴嫩发生的电子设备爆炸事件提醒我们,这些设备也可能成为危险的武器。本文将深入探讨电子袭击的原理、防范措施,以及网络智能…

【论文阅读】Face2Diffusion for Fast and Editable Face Personalization

code:mapooon/Face2Diffusion: [CVPR 2024] Face2Diffusion for Fast and Editable Face Personalization https://arxiv.org/abs/2403.05094 (github.com) 论文 介绍 目标:向 T2I 模型不知道的图像中插入特定概念(例如某人的脸&#xff…

极狐GitLab 重要安全版本:17.3.3, 17.2.7, 17.1.8, 17.0.8, 16.11.10

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…

通过logstash同步elasticsearch数据

1 概述 logstash是一个对数据进行抽取、转换、输出的工具,能对接多种数据源和目标数据。本文介绍通过它来同步elasticsearch的数据。 2 环境 实验仅仅需要一台logstash机器和两台elasticsearch机器(elasticsearch v7.1.0)。本文用docker来模…

css 样式简单学习(一)

目录 1. css 介绍 1.1 css 样式 1.2 css代码风格 1.2.1 书写格式 1.2.2 样式大小写​编辑 1.2.3 空格规范 2. 基础选择器 2.1 选择器的作用​编辑 2.2 选择器的分类 2.3 基础选择器 2.3.1 标签选择器​编辑 2.3.2 类选择器​编辑 2.3.3 类选择器-多类名​编辑 2.…

简单题88. 合并两个有序数组 (Python)20240920

问题描述: python: class Solution(object):def merge(self, nums1, m, nums2, n):""":type nums1: List[int]:type m: int:type nums2: List[int]:type n: int:rtype: None Do not return anything, modify nums1 in-place instead.&qu…

选址模型 | 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容(Matlab)

目录 效果一览基本介绍程序设计参考资料 效果一览 基本介绍 基于混沌模拟退火粒子群优化算法的电动汽车充电站选址与定容(Matlab) 问题建模:首先,需要将电动汽车充电站选址与定容问题进行数学建模,确定目标函数和约束…

React18入门教程

React介绍 React由Meta公司开发,是一个用于 构建Web和原生交互界面的库 React的优势 相较于传统基于DOM开发的优势 组件化的开发方式 不错的性能 相较于其它前端框架的优势 丰富的生态 跨平台支持 React的市场情况 全球最流行,大厂必备 开发环境…

【Verilog学习日常】—牛客网刷题—Verilog快速入门—VL24

边沿检测 有一个缓慢变化的1bit信号a,编写一个程序检测a信号的上升沿给出指示信号rise,当a信号出现下降沿时给出指示信号down。 注:rise,down应为单脉冲信号,在相应边沿出现时的下一个时钟为高,之后恢复到0&#xff0…

密集行人数据集 CrowdHumanvoc和yolo两种格式,yolo可以直接使用train val test已经划分好有yolov8训练200轮模型

密集行人数据集 CrowdHuman voc和yolo两种格式,yolo可以直接使用 train val test已经划分好 有yolov8训练200轮模型。 CrowdHuman 密集行人检测数据集 数据集描述 CrowdHuman数据集是一个专为密集行人检测设计的数据集,旨在解决行人密集场景下的检测挑…

关于实时数仓的几点技术分享

一、实时数仓建设背景 业务需求的变化:随着互联网和移动互联网的快速发展,企业的业务需求变得越来越复杂和多样化,对数据处理的速度和质量要求也越来越高。传统的T1数据处理模式已经无法满足企业的需求,实时数据处理成为了一种必…

什么是 IP 地址信誉?5 种改进方法

IP 地址声誉是营销中广泛使用的概念。它衡量 IP 地址的质量,这意味着您的电子邮件进入垃圾邮件或被完全阻止发送的可能性。 由于每个人都使用专用电子邮件提供商而不是直接通过 IP 地址进行通信,因此,这些服务可以跟踪和衡量发件人的行为质量…

表情包创作、取图小程序端(带流量主)

小程序永久免费,无任何广告,无任何违规功能! 小程序具备以下功能有: 支持创作者加入 支持在线制作表情包 使用说明 表情包必备工具,一款专属于你的制作表情包工具,斗图必备神器

Linux下进程通信与FIFO操作详解

Linux下进程通信与FIFO操作详解 一、命名管道(FIFO)概述1.1 命名管道的特点1.2 创建命名管道二、命名管道的操作2.1 打开命名管道2.2 读写命名管道2.3 关闭命名管道三、命名管道的使用实例3.1 命名管道的创建和通信过程3.1.1 发送方(writer)3.1.2 接收方(reader)3.2 运行…

python 爬虫 selenium 笔记

todo 阅读并熟悉 Xpath, 这个与 Selenium 密切相关、 selenium selenium 加入无图模式,速度快很多。 from selenium import webdriver from selenium.webdriver.chrome.options import Options# selenium 无图模式,速度快很多。 option Options() o…

Qt/C++事件过滤器与控件响应重写的使用、场景的不同

在Qt/C中,事件过滤器和控件响应重写是两种用于捕获和处理鼠标、键盘等事件的机制,它们的用途和使用场景不同,各有优劣。下面详细介绍它们的区别、各自适用的场景、以及混合使用的场景和注意事项。 1. 事件过滤器(Event Filter&…

全能OCR神器GOT-OCR2.0整合包部署教程

项目地址:https://github.com/Ucas-HaoranWei/GOT-OCR2.0 整合包下载:https://pan.quark.cn/s/3757da820e65 显卡建议使用RTX 30以上的 ①先安装NVIDIA显卡驱动: https://www.nvidia.cn/drivers/lookup/ 输入显卡型号搜索就行 ②安装CUDA 工具包 cu…

Django 聚合查询

文章目录 一、聚合查询二、使用步骤1.准备工作2.具体使用3.分组查询(annotate)1.定义2.使用3.具体案例 4.F() 查询1.定义2.使用 5.Q() 查询1.定义2.查询 一、聚合查询 使用聚合查询前要先从 django.db.models 引入 Avg、Max、Min、Count、Sum&#xff0…

力扣 2529.正整数和负整数的最大计数

文章目录 题目介绍解法 题目介绍 解法 采用红蓝染色体法,具体介绍参考 红蓝染色体法 通过红蓝染色体法可以找到第一个大于大于target的位置,使所以本题可以找第一个大于0的位置,即负整数的个数;数组长度 - 第一个大于1的位置即正…