基于深度学习的花卉智能分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        传统的花卉分类方法通常依赖于专家的知识和经验,这种方法不仅耗时耗力,而且容易受到主观因素的影响。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络(CNN),利用花卉数据集进行模型训练与验证,预测准确率达到 84.3%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,能够从大量的图像数据中自动学习和提取特征,从而实现高效、准确的分类。

2. 花卉数据集读取与预处理

        利用 Tensorflow 框架从文件夹中读取花卉图像数据:

# 花卉类别
class_map = {'tulip': 0, 'sunflower': 1, 'rose': 2, 'dandelion': 3, 'daisy': 4}
class_name_dict = {0: 'tulip', 1: 'sunflower', 2: 'rose', 3: 'dandelion', 4: 'daisy'}def image_generator(height,width):datagen = ImageDataGenerator(rescale=1./255.,validation_split=0.2,rotation_range=10,width_shift_range=0.05,height_shift_range=0.05,# shear_range=0.05,brightness_range=[0.5, 1.5],)train_ds = datagen.flow_from_directory(data_dir,batch_size=batch_size,subset="training",#color_mode = 'grayscale',shuffle=True,class_mode='categorical',target_size=(height, width),classes=class_map)val_ds = datagen.flow_from_directory(data_dir,subset="validation",#seed=123,#color_mode = 'grayscale',class_mode='categorical',target_size=(height, width),batch_size=batch_size,classes=class_map)return train_ds, val_ds

3. 深度卷积神经网络模型构建

3.1 VGG16 Base Model

        VGG(Visual Geometry Group)是一个视觉几何组在2014年提出的深度卷积神经网络架构。VGG在2014年ImageNet图像分类竞赛亚军,定位竞赛冠军;VGG网络采用连续的小卷积核(3x3)和池化层构建深度神经网络,网络深度可以达到16层或19层,其中VGG16和VGG19最为著名。

VGG16和VGG19网络架构非常相似,都由多个卷积层和池化层交替堆叠而成,最后使用全连接层进行分类。两者的区别在于网络的深度和参数量,VGG19相对于VGG16增加了3个卷积层和一个全连接层,参数量也更多。

VGG网络被广泛应用于图像分类、目标检测、语义分割等计算机视觉任务中,并且其网络结构的简单性和易实现性使得VGG成为了深度学习领域的经典模型之一。

input_shape = (height, width, 3)
base_model = tf.keras.applications.vgg16.VGG16(weights='./pretrained_models/vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5', include_top=False,input_shape=input_shape
)
base_model.trainable = Falsemodel_vgg16 = tf.keras.Sequential()
model_vgg16.add(base_model)
model_vgg16.add(tf.keras.layers.Flatten())model_vgg16.add(tf.keras.layers.Dense(len(class_map), activation='softmax'))model_vgg16.compile(loss='categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(0.001),metrics=['accuracy'])
model_vgg16.summary()

         模型训练:

vgg16_history = model_vgg16.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper]
)
Epoch 1/100
69/69 [==============================] - ETA: 0s - loss: 0.9497 - accuracy: 0.6451
Epoch 1: val_accuracy improved from -inf to 0.78102, saving model to best_vgg16_model.h5
69/69 [==============================] - 308s 4s/step - loss: 0.9497 - accuracy: 0.6451 - val_loss: 0.6584 - val_accuracy: 0.7810......
Epoch 11/100
69/69 [==============================] - ETA: 0s - loss: 0.0755 - accuracy: 0.9854
Epoch 11: val_accuracy did not improve from 0.80839
69/69 [==============================] - 349s 5s/step - loss: 0.0755 - accuracy: 0.9854 - val_loss: 0.6177 - val_accuracy: 0.7938
Epoch 11: early stopping

 3.2 InceptionV3 Base Model

        深度神经网络(Deep Neural Networks, DNN)或深度卷积网络中的Inception模块是由Google的Christian Szegedy等人提出,包括Inception-v1、Inception-v2、Inception-v3、Inception-v4及Inception-ResNet系列。

tf.keras.backend.clear_session()base_model = tf.keras.applications.InceptionV3(weights='./pretrained_models/inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', include_top=False, input_shape=input_shape
)
base_model.trainable = Falsemodel_inceptionv3 = tf.keras.Sequential()
model_inceptionv3.add(base_model)
model_inceptionv3.add(tf.keras.layers.Flatten())model_inceptionv3.add(tf.keras.layers.Dense(len(class_map), activation='softmax'))model_inceptionv3.compile(loss='categorical_crossentropy',optimizer=tf.keras.optimizers.Adam(0.001),metrics=['accuracy']
)
model_inceptionv3.summary()

        模型训练:

inceptionv3_history = model_inceptionv3.fit(train_ds,validation_data=val_ds,epochs=epochs,callbacks=[checkpointer, earlystopper]
)

3.3 模型性能对比

labels = ['损失Loss','准确率Accuracy']
vgg16_evals = [vgg16_eval_result['损失Loss'], vgg16_eval_result['准确率Accuracy']]
inceptionv3_evals = [inceptionv3_eval_result['损失Loss'], inceptionv3_eval_result['准确率Accuracy']]x = np.arange(len(labels))  # the label locations
bar_width = 0.35  # the width of the barsfig, ax = plt.subplots(figsize=(8, 6), dpi=100)
rects1 = ax.bar(x - bar_width/2, vgg16_evals, bar_width, label='VGG16')
rects2 = ax.bar(x + bar_width/2, inceptionv3_evals, bar_width, label='Inception-V3')# Add some text for labels, title and custom x-axis tick labels, etc.
ax.set_ylabel('Loss/Acc')
ax.set_title('VGG16 与 Inception-V3 的花卉分类性能对比')
ax.set_xticks(x, labels)
ax.legend()ax.bar_label(rects1, padding=3)
ax.bar_label(rects2, padding=3)fig.tight_layout()plt.show()

        可以看出,基于 Inception-V3 为 base 模型的卷积神经网络,其预测准确率较高,为84.31%,以此花卉智能分类识别系统中,我们将集成该模型。

4. 花卉图片数据采集与样本扩充

        原始数据集的每类花卉包括 607 个样本,虽然样本均衡,但是针对深度学习类的神经网络模型来说,样本还是不足,从建模过程中也能看出,预测准确率为 84.3%。

{'tulip': 607, 'sunflower': 607, 'rose': 607, 'dandelion': 607, 'daisy': 607}

        本项目中,利用网络爬虫采集搜索引擎中搜索到的各类花卉的图片,来扩充样本数据集:

Coding 进行中,待更新......

5. 花卉智能分类识别系统

5.1 系统首页

        系统首页提供简洁明了的界面设计,包括系统名称、主要功能简介以及使用指南等内容。用户可以通过主页快速了解系统的基本操作流程及注意事项。首页上还会展示一些示例图片,让用户直观地感受到系统的实际效果。

5.2 卷积神经网络模型介绍

5.3 花卉品种实时分类预测

        用户上传花卉图像后,系统将自动调用预先训练好的深度学习模型进行分析处理。模型会根据图像中的特征判断花卉种类,并给出相应的分类结果。此外,系统还会提供模型对所有类别的预测概率分布,提升模型输出可解释性。

        (1)郁金香(Tulip)类别样本预测

        (2)太阳花(Sunflower)类别样本预测

        (3)玫瑰花(Rose)类别样本预测

        (4)蒲公英(Dandelion)类别样本预测

        (5)雏菊(Daisy)类别样本预测

6. 总结

        本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络(CNN),利用花卉数据集进行模型训练与验证,预测AUC达到 94.9%,使用Flask框架结合Bootstrap前端技术搭建了一个交互式的分析预测平台,能够从大量的图像数据中自动学习和提取特征,从而实现高效、准确的分类。 
 

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python-数据挖掘实战案例

2. Python-深度学习实战案例

3. Python-管理系统实战案例

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428359.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【第十三章:Sentosa_DSML社区版-机器学习聚类】

目录 【第十三章:Sentosa_DSML社区版-机器学习聚类】 13.1 KMeans聚类 13.2 二分KMeans聚类 13.3 高斯混合聚类 13.4 模糊C均值聚类 13.5 Canopy聚类 13.6 Canopy-KMeans聚类 13.7 文档主题生成模型聚类 13.8 谱聚类 【第十三章:Sentosa_DSML社…

环境搭建2(游戏逆向)

#include<iostream> #include<windows.h> #include<tchar.h> #include<stdio.h> #pragma warning(disable:4996) //exe应用程序 VOID PrintUI(CONST CHAR* ExeName, CONST CHAR* UIName, CONST CHAR* color, SHORT X坐标, SHORT y坐标, WORD UIwide, W…

硬件工程师笔试面试——开关

目录 11、开关 11.1 基础 开关原理图 开关实物图 11.1.1 概念 11.1.2 常见的开关类型及其应用 11.2 相关问题 11.2.1 开关的工作原理是什么? 11.2.2 在设计一个电子系统时,如何选择最适合的开关类型? 11.2.3 不同类型的开关在实际应用中有哪些优势和局限性? 11.…

AI+教育|拥抱AI智能科技,让课堂更生动高效

AI在教育领域的应用正逐渐成为现实&#xff0c;提供互动性强的学习体验&#xff0c;正在改变传统教育模式。AI不仅改变了传统的教学模式&#xff0c;还为教育提供了更多的可能性和解决方案。从个性化学习体验到自动化管理任务&#xff0c;AI正在全方位提升教育质量和效率。随着…

使用Renesas R7FA8D1BH (Cortex®-M85)实现多功能UI

目录 概述 1 系统框架介绍 1.1 模块功能介绍 1.2 UI页面功能 2 软件框架结构实现 2.1 软件框架图 2.1.1 应用层API 2.1.2 硬件驱动层 2.1.3 MCU底层驱动 2.2 软件流程图 4 软件功能实现 4.1 状态机功能核心代码 4.2 页面功能函数 4.3 源代码文件 5 功能测试 5.1…

基于多域名,通过云运营商弹性负载,Nginx配置等基于的多租户系统部署

已经开发好久的系统&#xff0c;因为业务上没有需求&#xff0c;没有做上线部署&#xff0c;此系统为多租户系统&#xff0c;原来设计是通过租户码参数来识别的&#xff0c;每个租户访问&#xff0c;需要传自己的码过来&#xff0c;才能确定是哪个租户登录系统&#xff0c; 今…

nacos和eureka的区别详细讲解

​ 大家好&#xff0c;我是程序员小羊&#xff01; 前言&#xff1a; Nacos 和 Eureka 是两种服务注册与发现的组件&#xff0c;它们在微服务架构中扮演重要角色。两者虽然都是为了解决服务发现的问题&#xff0c;但在功能特性、架构、设计理念等方面有很多不同。以下是详细的…

C++——map和set的使用以及map系列

目录 map和set的使用 1. 序列式容器和关联式容器 2. set系列的使⽤ 2.1 set和multiset参考⽂档 2.2 set类的介绍 2.3 set的构造和迭代器 2.4 set的增删查 set的增删查关注以下⼏个接⼝即可&#xff1a; 2.6 find和erase使⽤样例&#xff1a; lower_bound(); upper_bo…

如何选择OS--Linux不同Distribution的选用

写在前言&#xff1a; 刚写了Windows PC的不同editions的选用&#xff0c;趁热&#xff0c;把Linux不同的Distribution选用也介绍下&#xff0c;希望童鞋们可以了解-->理解-->深入了解-->深入理解--...以致于能掌握特定版本的Linux的使用甚者精通。……^.^…… so&a…

项目文件配置

1. 参数配置化 1.1 问题分析 1.2 问题解决 Value 注解通常用于外部配置的属性注入&#xff0c;具体用法为&#xff1a;Value("${配置文件中的key}") 2. yml配置文件 2.1 SpringBoot提供了多种属性配置方式 2.2 常见配置文件格式对比 2.3 yml 基本语法 大小写敏…

实时美颜的技术突破:视频美颜SDK与直播美颜工具的开发详解

如今&#xff0c;视频美颜SDK和直播美颜工具的开发&#xff0c;为各类应用提供了技术支持&#xff0c;使得美颜效果更加智能、高效。本文将详细探讨实时美颜的技术突破及其在视频美颜SDK和直播美颜工具中的应用与开发。 一、视频美颜SDK的核心技术 1.人脸检测与特征点识别 视…

HObject复制耗时试用

测试源码一 //第一步const int N 1000;HObject[] imgs new HObject[N];for (int i 0; i < N; i){HOperatorSet.GenImageConst(out imgs[i], "byte", 1024 i, 1024 i);}//第二步List<HObject> lists new List<HObject>();for(int i 0; i < …

OpenCV特征检测(3)计算图像中每个像素处的特征值和特征向量函数cornerEigenValsAndVecs()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算图像块的特征值和特征向量用于角点检测。 对于每一个像素 p &#xff0c;函数 cornerEigenValsAndVecs 考虑一个 blockSize blockSize 的邻…

[Spring]Spring MVC 请求和响应及用到的注解

文章目录 一. Maven二. SpringBoot三. Spring MVC四. MVC注解1. RequestMapping2. RequestParam3. PathVariable4. RequestPart5. CookieValue6. SessionAttribute7. RequestHeader8. RestController9. ResponseBody 五. 请求六. 响应 一. Maven Maven是⼀个项⽬管理⼯具。基于…

JavaScript发送邮件:实现前端触发的教程?

JavaScript发送邮件的方式&#xff1f;怎么使用JavaScript发信&#xff1f; 无论是用户反馈、联系表单还是自动通知&#xff0c;前端触发的邮件发送功能都能极大地提升用户体验。AokSend将详细介绍如何通过JavaScript发送邮件&#xff0c;实现前端触发的邮件发送功能。 JavaS…

力扣 438找到字符串中所有字母异位词

https://leetcode.cn/problems/find-all-anagrams-in-a-string/ 题目描述 题目分析 异位词所表示的空间 P \text{P} P 即一字符串的所有排列,记 s i \bold{s_i} si​为以 s [ i ] s[i] s[i]开头的长度为 plen \text{plen} plen的 s s s子串 故本题可理解为求解 A n s Ans Ans…

LabVIEW提高开发效率技巧----采用并行任务提高性能

在复杂的LabVIEW开发项目中&#xff0c;合理利用并行任务可以显著提高系统的整体性能和响应速度。并行编程是一种强大的技术手段&#xff0c;尤其适用于实时控制、数据采集以及多任务处理等场景。LabVIEW的数据流编程模型天然支持并行任务的执行&#xff0c;结合多核处理器的硬…

Toon Dinosaurs 2 可爱卡通恐龙怪物模型带动画

剑龙、甲龙、厚头龙、副龙、二龙和腕龙使用(根运动)动画文件绘制人物。 动画: 空闲+随机空闲动画跳跃(跳跃、跌倒、落地)。 3攻击 2个被击中,1个死亡和1个起床动画。 咆哮 左转和右转。跑,跑,转身。 最近添加:向前走,转身走。 查看视频以观看动画! 近似三角形计数:…

读构建可扩展分布式系统:方法与实践10最终一致性

1. 最终一致性 1.1. 在一些应用领域&#xff0c;通常谈论的是银行和金融行业&#xff0c;最终一致性根本不合适 1.2. 事实上&#xff0c;最终一致性在银行业已经使用了很多年 1.2.1. 支票需要几天时间才能在你的账户上进行核对&#xff0c;而且你可以轻松地开出比账户余额多的…

网络基础,协议,OSI分层,TCP/IP模型

网络的产生是数据交流的必然趋势&#xff0c;计算机之间的独立的个体&#xff0c;想要进行数据交互&#xff0c;一开始是使用磁盘进行数据拷贝&#xff0c;可是这样的数据拷贝效率很低&#xff0c;于是网络交互便出现了&#xff1b; 1.网络是什么 网络&#xff0c;顾名思义是…