【医疗大数据】基于 B2B 的医疗保健系统中大数据信息管理的安全和隐私问题分析

基于 B2B 的医疗保健系统中大数据信息管理的安全和隐私问题分析

image-20240921170901891

1、引言

1-1 医疗大数据的特点

10 V模型:在医疗领域,大数据的特点被描述为10 V,包括价值(Value)、体量(Volume)、速度(Velocity)、真实性(Veracity)、多样性(Variety)、有效性(Validity)、可行性(Viability)、波动性(Volatility)、脆弱性(Vulnerability)和可视化(Visualization)。

  • 价值:处理后数据的重要性。
  • 体量:数据生成的复杂性和数量。
  • 速度:数据生成、存储和传输的速度。
  • 真实性:数据的可信度。
  • 多样性:数据的类型,包括结构化、半结构化和非结构化数据。
  • 有效性:数据的准确性。
  • 可行性:在大量数据中找到相关信息的能力。
  • 波动性:数据随时间变化的相关性。
  • 脆弱性:系统对安全攻击的脆弱性。
  • 可视化:数据的隐私保护和呈现方式。

1-2 相关研究

  • 安全与隐私:研究了大数据在B2B医疗技术中的安全和隐私问题,包括数据安全生命周期、安全和隐私方法、不同国家的数据保护法律。
  • 应用与挑战:分析了大数据技术在公共健康、行为模式、治疗监控等方面的应用,以及在B2B医疗领域采用大数据技术可能面临的挑战。

2、医疗大数据的发展

在医疗大数据领域,B2B(Business-to-Business)基于的医疗保健部门的发展可以划分为五个时代,每个时代都受到当时新兴技术的影响。

  1. 医疗保健1.0

    • 特点:这是B2B医疗保健系统的起始阶段,主要依赖基本的卫生措施,如卫生、疫苗接种和地方病调查。
    • 例子:1830年,英国政府在发现水源污染与地方病之间存在证据后,开始向每家每户提供管道水。
  2. 医疗保健2.0

    • 特点:随着工业革命的到来,医疗保健部门的发展也得到了推动。大型机器使得药品的大规模生产成为可能,医院变得更加专业化,招募了更多训练有素的人员来处理紧急情况。
    • 进步:药品的可获得性增加,新研究的开展,以及对专业人员的需求增加。
  3. 医疗保健3.0

    • 特点:信息技术的发展标志着这一时代的开始。快速的计算设备能够比人类更快地分析医疗数据,互联网的发展促进了医学领域的研究。
    • 成就:通过研究,可以更容易地收集各种疾病的数据,从而开发新药。
  4. 医疗保健4.0

    • 特点:数字技术如人工智能(AI)、物联网(IoT)传感器和用户界面被用来处理B2B医疗保健数据。
    • 技术应用:利用新技术如基因型和RNA表达进行分子诊断,使用机器人技术进行更精确的手术,以及通过不同的电子设备实现B2B医疗保健的定制化。
    • 现状:这一阶段仍在发展中,存在许多正在研究的漏洞。
  5. 医疗保健5.0

    • 特点:第五代通信技术是医疗保健5.0网络架构的核心,用于连接各种医疗硬件。
    • 技术应用:自动化和AI作为医疗保健5.0中最有前景的两项技术,有能力革新整个行业。包括在线培训焦虑患者在内的准确和系统的疾病检测。

3、优势

3-1 降低医疗成本和时间

  • 传统的以疾病为中心的诊疗流程耗时且成本高昂。
  • B2B医疗大数据提供了大量数据,使医生能够更快地分析和预测患者的疾病,从而减少治疗时间和成本。

3-2 减少后期治疗成本

  • 疾病治疗是一个长期过程,B2B医疗大数据通过分析患者的医疗记录,识别需要额外关注的病人。
  • 这有助于改善患者的健康状况,同时减少医疗费用。

3-3 改善客户服务

  • B2B医疗大数据收集患者的医疗记录、就诊频率、所需资源等信息。
  • 通过分析这些数据,医院可以重新安排人力和资源,提高经济效率,满足患者需求。

3-4 实时分析

  • 在医疗4.0时代,患者使用智能设备监测日常健康数据。
  • 通过分析这些健康记录,可以对患者的健康状况进行早期预警,用于医院分析和研究。

3-5 新的治疗方法

  • B2B医疗大数据包含了患者所有治疗相关的记录。
  • 医生可以通过分析现有治疗效果,检查对新治疗方法的反应。
  • 如果旧的治疗计划没有进展,医生可以通过最少的测试制定新的治疗计划。

3-6 处理原始数据

  • B2B医疗数据由大型医院、小型诊所、实验室、智能设备等生成,但这些数据通常是原始形式。
  • 通过大数据处理技术,这些数据被处理后用于制定B2B医疗政策,医生可以为患者制定更具成本效益的治疗计划。
  • 大数据处理可以作为B2B医疗专业人员与原始收集数据之间的桥梁。

3-7 流行病预测

  • 医疗保健大数据包括实时患者记录以及流行病的历史记录。
  • 通过比较这些不同的记录,可以轻松地进行流行病预测和制定安全计划。
  • 医疗保健大数据有助于我们对抗任何类型的流行病或自然灾害。

4、应用

4-1 临床应用

  • 设备类型:临床B2B医疗设备,如基于云的心电图(ECG)机,使用人工神经网络算法分析心率并预测心脏疾病。
  • 数据生成:这些设备在医院或诊所中使用,生成大量数据,帮助预测和监测疾病。
  • 辅助治疗:例如,最新的糖尿病管理系统帮助患者选择合适的饮食并解答疑问,以及其他监测患者健康状况的设备。

4-2 非临床应用

  • 设备类型:非临床B2B医疗设备,如物联网(IoT)设备和小型传感器,不直接用于临床治疗,但有助于维持患者健康,降低医疗和诊断成本。
  • 健康监测:例如,人体活动监测设备使用压电晶体产生电荷,监测人体运动,如脚步、肘部等。

4-3 物流应用

  • 设备类型:物流B2B医疗设备,如多代理系统、智能垃圾桶和智能开关,用于数据的传输和处理,提高医院效率。
  • 数据处理:这些设备处理和传输基于B2B的医疗数据,优化医疗流程。

5、工具

5-1 Attunity

  • 功能:支持使用H7消息传递标准通信的所有数据库的集成。
  • 附加功能:可以作为查询处理和访问管理工具使用。
  • 数据存储:使用基于虚拟数据的方法,通过向导将数据存储在对象存储中并进行连接。

5-2 Informatica

  • 功能:为B2B基础的医疗保健领域提供数据集成、数据管理和数据治理服务。
  • 成本效益:以低成本提供服务。
  • 患者互动:增强患者与B2B医疗保健领域的互动。
  • 效率提升:通过连接云平台,加快索赔处理和更新权限申请的速度。

5-3 Jitterbit

  • 功能:允许医疗专业人员同时访问多个平台,以管理临床数据和工作流程数据。
  • 患者护理:通过结构化和非结构化数据提供对治疗过程的更好理解,从而改善患者护理。

5-4 SnapLogic

  • 定位:首个针对临床数据和应用的集成平台即服务(iPaaS)。
  • 特点:提供弹性和快速响应,使云中复杂应用的集成快速且成本低廉。

5-5 Pentaho

  • 功能:集成来自不同平台(如Hadoop、NoSQL等)的数据。
  • 服务改进:通过遵循HIPAA和HL7标准,提高服务质量,减少医疗错误和成本。

5-6 Palantir

  • 功能:用于整合不同数据源与开源数据的工具。
  • 质量提升:通过开发追踪临床程序的模型,提高B2B基础医疗保健领域的质量。

6、B2B医疗大数据中的隐私保护

6-1 保护法律

  • GDPR(欧盟):2018年实施,提供数据删除权,允许数据跨国存储。
  • PDPB(印度):与GDPR类似,但不允许数据本地化,不提供“被遗忘权”。
  • IT Act(印度):提供受害者赔偿和对攻击者的监禁。
  • PDBR(斯里兰卡):类似GDPR,但公共和私营公司的数据处理法规不同。
  • PIPEDA(加拿大):规定了个人数据的收集、存储和使用的不同规则。
  • PIPA(韩国):与GDPR类似,重点保护个人数据不被非法收集和使用。
  • HIPAA(美国):1996年实施,保护公民健康信息,有隐私和安全规则。
  • PDPA(阿根廷):2000年实施,适用于所有政府和私人组织,提供“被遗忘权”。
  • 澳大利亚隐私原则:结合13个原则处理个人和私人数据,透明化数据收集和处理。
  • BIA(巴西):2014年实施,未经同意不得收集和处理个人信息。
  • 智利个人数据保护法:1998年实施,定义了哪些数据属于个人数据。

6-2 去标识化

  • 一般化:将精确信息转换为一般信息,如将出生日期转换为月份或年份。
  • k-匿名性:数据集中的记录之间保持相似性,降低重新识别的概率。
  • L-多样性:改进的k-匿名性,确保数据集中敏感属性的多样性。
  • T-接近性:确保数据集中敏感属性的分布与所有属性的分布之间的距离小于预定义阈值。

6-3 差分隐私

  • 控制对输入查询的响应,减少个人信息泄露的风险。
  • 使用拉普拉斯变换和指数方法限制查询响应。
  • 提供隐私保护而不改变原始数据集。

image-20240921171930289

6-4 扰动

  • 通过添加随机化来保护数据,如添加噪声或交换数据项。
  • 提供更好的防御对抗组合攻击、背景知识攻击和De Finetti攻击。

6-5 数据中心方法

  • 重视数据本身的安全性而非数据环境,如网络。
  • 在数据的整个生命周期内保护数据,包括生成、传输和处理。

6-6 围墙花园方法

  • 在应用层施加安全措施,通过访问控制和防火墙控制网络输入。
  • 限制:不提供对内部攻击的安全防护。

6-7 柔术安全

  • 使用推荐引擎推荐数据及其相关的漏洞,利用对手的力量对抗他。

6-8 HybrEx

  • 结合公共和私有云,敏感信息存储在私有云中,其他信息存储在公共云中。
  • 使用MapReduce在公共和私有云之间分配应用程序。
  • 包括四种方式:Map Hybrid、水平分割、垂直分割和混合。

在这里插入图片描述

7. B2B医疗大数据的安全技术

7-1 认证(Authentication)

  • 定义:验证访问B2B医疗数据用户身份的过程。
  • 历史:最早的远程认证系统由Lamport在1981年创建,后续有CINON和PERM协议对其进行改进。
  • 技术:可以分为基于密码的认证和基于生物特征的认证协议。
  • 实例
    • Srinivas等人(2018)提出了基于密码的可穿戴设备认证协议。
    • Dhillon和Kalra(2018)提出了基于三因素认证的协议,使用椭圆曲线密码学。
    • Kumari和Renuka(2019)提出了基于生物特征的三因素认证协议。
    • Zhang等人(2018)提出了基于心电图的认证协议。

7-2 访问控制(Access Control)

  • 定义:根据访问控制策略,控制用户对数据的操作。
  • 方法:包括基于角色的访问控制(RBAC)、基于属性的访问控制(ABAC)等。
  • RBAC:根据用户角色分配访问权限,但存在一些限制,如不支持动态访问控制权分配。
  • ABAC:根据环境变量、用户属性等参数提供访问权限,更灵活。
  • 实例
    • Son等人(2019)提出了混合云B2B医疗系统中的基于属性的访问控制方案。
    • Rashid等人(2020)提出了基于角色的访问控制方案,使用MVC框架。
    • Pal等人(2019)提出了基于策略的访问控制机制。

7-3 加密(Encryption)

  • 定义:使用不同的加密技术(如RSA、AES、DES等)来保护数据完整性。
  • 云场景:在云存储中,传统的加密方法不适用,因此使用可搜索的加密方案(SES),如可搜索对称加密、公钥加密等。
  • 挑战:SES不提供细粒度的访问控制,因此提出了基于属性的关键词搜索(ABKS)。
  • 实例
    • Li和Jing(2019)提出了一种关键词可搜索的加密方案,适用于B2B IoT医疗设备。
    • Ma等人(2018)提出了一种适用于移动B2B医疗设备的可搜索公钥加密方法。
    • Chen等人(2019)提出了一种电子健康数据共享方案的可搜索加密方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428875.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Leetcode Hot 100刷题记录 -Day16(旋转图像)

旋转图像 问题描述: 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 示例 1 输入:matrix [[1,2,3],[4,5,6]…

Python学习——【4.2】数据容器:tuple元组

文章目录 【4.2】数据容器:tuple元组一、元组的定义格式二、元组的特点三、元组的操作(一)常见操作(二)循环遍历 【4.2】数据容器:tuple元组 一、元组的定义格式 为什么需要元组 列表是可以修改的。如果想…

【网络安全】分享4个高危业务逻辑漏洞

未经许可,不得转载。 文章目录 正文逻辑漏洞1逻辑漏洞2逻辑漏洞3逻辑漏洞4其它正文 该目标程序是一家提供浏览器服务的公司,其核心功能是网页抓取和多账户登录操作,类似于浏览器中的隐身模式,但更加强大和高效。通过该平台,用户可以轻松管理并同时运行数百个隐身浏览器实…

Navicate 链接Oracle 提示 Oracle Library is not loaded ,账号密码都正确地址端口也对

Navicate 链接Oracle 提示 Oracle Library is not loaded ,账号密码都正确地址端口也对的问题 解决办法 出现 Oracle Library is not loaded 错误提示,通常是因为 Navicat 无法找到或加载 Oracle 客户端库(OCI.dll)。要解决这个问题&#x…

【自动驾驶】决策规划算法 | 数学基础(三)直角坐标与自然坐标转换Ⅱ

写在前面: 🌟 欢迎光临 清流君 的博客小天地,这里是我分享技术与心得的温馨角落。📝 个人主页:清流君_CSDN博客,期待与您一同探索 移动机器人 领域的无限可能。 🔍 本文系 清流君 原创之作&…

Centos中关闭swap分区,关闭内存交换

概述: Swap 分区是 Linux 系统中扩展物理内存的一种机制。Swap的主要功能是当全部的RAM被占用并需要更多内存时,用磁盘空间代理RAM内存。Swap对虚拟化技术资源损耗非常大,一般虚拟化是不允许开启交换空间的,如果不关闭Swap&…

LED显示屏迎来革新:GOB封装技术引领行业新风尚

在我们日常生活中,LED显示屏无处不在,从繁华的街头广告牌到家庭娱乐中心的大屏幕电视,它们都以鲜明的色彩和清晰的画质吸引着我们的目光。然而,在LED显示屏技术日新月异的今天,一种名为GOB(Glue On Board&a…

ChatCADChatCAD+:Towards a Universal and Reliable Interactive CAD using LLMs

ChatCAD(论文链接:[2302.07257] ChatCAD: Interactive Computer-Aided Diagnosis on Medical Image using Large Language Models (arxiv.org)) 网络流程图: 辅助阅读: 基于大型语言模型的医学图像交互式计算机辅助诊…

7、论等保的必要性

数据来源:7.论等保的必要性_哔哩哔哩_bilibili 等级保护必要性 降低信息安全风险 等级保护旨在降低信息安全风险,提高信息系统的安全防护能力。 风险发现与整改 开展等级保护的最重要原因是通过测评工作,发现单位系统内外部的安全风险和脆弱…

基于SpringBoot的考研助手系统+LW参考示例

系列文章目录 1.基于SSM的洗衣房管理系统原生微信小程序LW参考示例 2.基于SpringBoot的宠物摄影网站管理系统LW参考示例 3.基于SpringBootVue的企业人事管理系统LW参考示例 4.基于SSM的高校实验室管理系统LW参考示例 5.基于SpringBoot的二手数码回收系统原生微信小程序LW参考示…

c++9月20日

1.思维导图 2.顺序表 头文件 #ifndef RECTANGLE_H #define RECTANGLE_H#include <iostream>using namespace std;using datatype int ;//类型重定义class Seqlist { private://私有权限datatype *ptr; //指向堆区申请空间的起始地址int size;//堆区空间的长度int len …

在python爬虫中xpath方式提取lxml.etree._ElementUnicodeResult转化为字符串str类型

简单提取网页中的数据时发现的 当通过xpath方式提取出需要的数据的text文本后想要转为字符串&#xff0c;但出现lxml.etree._ElementUnicodeResult的数据类型不能序列化&#xff0c;在网上查找到很多说是编码问题Unicode编码然后解码什么的&#xff1b;有些是(导入的xml库而不…

【24华为杯数模研赛赛题思路已出】国赛B题思路丨附参考代码丨免费分享

2024年华为杯研赛B题解题思路 B题 WLAN组网中网络吞吐量建模 问题1 请根据附件WLAN网络实测训练集中所提供的网络拓扑、业务流量、门限、节点间RSSI的测试基本信息&#xff0c;分析其中各参数对AP发送机会的影响&#xff0c;并给出影响性强弱的顺序。通过训练的模型&#xff…

在SpringBoot项目中利用Redission实现布隆过滤器(布隆过滤器的应用场景、布隆过滤器误判的情况、与位图相关的操作)

文章目录 1. 布隆过滤器的应用场景2. 在SpringBoot项目利用Redission实现布隆过滤器3. 布隆过滤器误判的情况4. 与位图相关的操作5. 可能遇到的问题&#xff08;Redission是如何记录布隆过滤器的配置参数的&#xff09;5.1 问题产生的原因5.2 解决方案5.2.1 方案一&#xff1a;…

夏日遛娃绝佳之地:气膜儿童乐园—轻空间

随着夏季的到来&#xff0c;炎炎烈日让户外活动变得有些艰难。然而&#xff0c;在城市的某个角落&#xff0c;一座气膜儿童乐园却为家长和孩子们提供了一个理想的避暑天堂。这里的恒温控制保持在舒适的27℃&#xff0c;让孩子们在欢乐中享受每一个夏日的阳光&#xff0c;而家长…

由于安全风险,安全领导者考虑禁止人工智能编码

安全团队与开发团队之间的紧张关系 83% 的安全领导者表示&#xff0c;他们的开发人员目前使用人工智能来生成代码&#xff0c;57% 的人表示这已成为一种常见做法。 然而&#xff0c;72% 的人认为他们别无选择&#xff0c;只能允许开发人员使用人工智能来保持竞争力&#xff0…

IDA Pro基本使用

IDA Pro基本使用 1.DllMain的地址是什么? 打开默认在的位置1000D02E就是DllMain地址 按空格键可以看到图形化界面选择options、general勾选对应的选项在图像化也能看到 2.使用Imports 窗口并浏览到 gethostbyname&#xff0c;导入函数定位到什么地址? 这里可以打开Impo…

为人机交互保持预见性丨基于G32A1445的T-BOX应用方案

T-BOX是一种集成了通信、计算和控制功能的车载信息处理终端&#xff0c;通过车辆与云端、移动网络等进行数据交互&#xff0c;用于车、人、外部环境的互联互通&#xff0c;支持车辆定位、车载通信、远程控制、故障诊断、数据传输、紧急呼叫等功能&#xff0c;帮助车辆实现更加智…

OpenCV_最简单的鼠标截取ROI区域

在OpenCV中也存在鼠标的操作&#xff0c;今天我们先介绍一下鼠标中的操作事件 void setMousecallback(const string& winname, MouseCallback onMouse, void* userdata0) setMousecallback参数说明&#xff1a; winname:窗口的名字 onMouse:鼠标响应函数&#xff0c;回调…

计算机毕业设计 社区医疗服务系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…