行业人工智能研究-Python自监督方式学习图像表示算法

学术界人工智能研究落后于工业界

摘要

  • 行业或工业界在人工智能研究上超出学术界,并占据着大量的计算力,数据集和人才
  • 诱人的薪水和明朗的预期吸引大量人才离开学术界,涌入行业或工业界
  • 即使,比如Meta开源其人工智能模型,众多学者或专家仍然无法对其核心部分一探究竟。
  • 行业或工业界和学术界需要互惠互利,因为学术界从事底层基础理论研究,行业界在此基础上开始研发顶尖技术。
  • 中国,美国和德国都在加速人工智能研究。

各国AI研究

在这里插入图片描述

行业人工智能研究

摘要

  • 自监督方式学习图像表示算法应用于图像分割网络语义分割
  • 随机配置网络算法
  • 炉温预测模型
  • 非侵入式负载监控算法模型
  • 时间序列处理随机配置网络算法

Python自监督方式学习图像表示算法

图像视觉转换

import math
import numpy as np
import torch
import torch.nn as nn
import fastcore.all as fc
from PIL import Image
from functools import partial
from torchvision.transforms import RandomResizedCrop, RandomHorizontalFlip, Compose, ToTensor, ToPILImage

让我们创建一个大小为 224x224 且补丁大小为 16 的图像

img_size = 224
patch_size = 32

加载数据

imgs = fc.L(fc.Path("coco/val2017/").glob("*.jpg"))
imgs #(#5000) [Path('coco/val2017/000000182611.jpg'),Path('coco/val2017/000000335177.jpg'),Path('coco/val2017/000000278705.jpg'),Path('coco/val2017/000000463618.jpg'),Path('coco/val2017/000000568981.jpg'),Path('coco/val2017/000000092416.jpg'),Path('coco/val2017/000000173830.jpg'),Path('coco/val2017/000000476215.jpg'),Path('coco/val2017/000000479126.jpg'),Path('coco/val2017/000000570664.jpg')...]

转换

def transforms(img_size):return Compose([RandomResizedCrop(size=img_size, scale=[0.4, 1], ratio=[0.75, 1.33], interpolation=2), RandomHorizontalFlip(p=0.5), ToTensor()])def load_img(img_loc, transforms):img = Image.open(img_loc)return transforms(img)load_img = partial(load_img, transforms=transforms(img_size=img_size))
img = load_img(imgs[1])
img.shape #torch.Size([3, 224, 224])

创建图像补丁

imgp = img.unfold(1, patch_size, patch_size).unfold(2, patch_size, patch_size).permute((0, 3, 4, 1, 2)).flatten(3).permute((3, 0, 1, 2))
imgp.shape #torch.Size([49, 3, 32, 32])
fig, ax = plt.subplots(figsize=(4, 4), nrows=7, ncols=7)
for n, i in enumerate(imgp):ax.flat[n].imshow(ToPILImage()(i))ax.flat[n].axis("off")
plt.show()

创建屏蔽标记

tokens = imgp.shape[0]
mask_ratio = 0.75
mask_count = int(tokens* mask_ratio)
tokens, mask_count #(49, 36)
mask_idx = torch.randperm(tokens)[:mask_count]
mask = torch.zeros(tokens).long()
mask[mask_idx] = 1
mask
#tensor([1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1,
#        0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1,
#        0])
fig, ax = plt.subplots(figsize=(4, 4), nrows=7, ncols=7)
for n, i in enumerate(imgp):if mask[n] == 1:i = torch.zeros(3, 32, 32)ax.flat[n].imshow(ToPILImage()(i))ax.flat[n].axis("off")
plt.show()

为每个非屏蔽标记创建嵌入向量。

input_tokens = imgp[~mask.bool(), ...].flatten(1)
input_tokens.shape 
imgp[~mask.bool(), ...].shape 

👉更新:亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429108.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

小程序地图展示poi帖子点击可跳转

小程序地图展示poi帖子点击可跳转 是类似于小红书地图功能的需求 缺点 一个帖子只能有一个点击事件,不适合太复杂的功能,因为一个markers只有一个回调回调中只有markerId可以使用。 需求介绍 页面有地图入口,点开可打开地图界面地图上展…

python:编写一个函数查找字符串中的最长公共前缀

最近在csdn网站上刷到一个题目,题目要求编写一个函数查找字符串中的最长公共前缀,题目如下: 给出的答案如下: from typing import List def longestCommonPrefix(strs:List[str]) -> str:if len(strs) 0:return i 0 #代…

2024/9/21 数学20题

常见概率可加性:

网络安全详解

目录 引言 一、网络安全概述 1.1 什么是网络安全 1.2 网络安全的重要性 二、网络安全面临的威胁 2.1 恶意软件(Malware) 2.2 网络钓鱼(Phishing) 2.3 中间人攻击(Man-in-the-Middle Attack) 2.4 拒…

Mac 搭建仓颉语言开发环境(Cangjie SDK)

文章目录 仓颉编程语言通用版本SDK Beta试用报名仓颉语言文档注册 GitCode登录 GitCode 下载 Cangjie SDK配置环境变量VSCode 插件VSCode 创建项目 仓颉编程语言通用版本SDK Beta试用报名 https://wj.qq.com/s2/14870499/c76f/ 仓颉语言文档 https://developer.huawei.com/c…

Redis——持久化策略

Redis持久化 Redis的读写操作都是在内存上,所以Redis性能高。 但是当重启的时候,或者因为特殊情况导致Redis崩了,就可能导致数据的丢失。 所以Redis采取了持久化的机制,重启的时候利用之间持久化的文件实现数据的恢复。 Redis提…

Golang | Leetcode Golang题解之第424题替换后的最长重复字符

题目: 题解: func characterReplacement(s string, k int) int {cnt : [26]int{}maxCnt, left : 0, 0for right, ch : range s {cnt[ch-A]maxCnt max(maxCnt, cnt[ch-A])if right-left1-maxCnt > k {cnt[s[left]-A]--left}}return len(s) - left }f…

PyCharm与Anaconda超详细安装配置教程

1、安装Anaconda(过程)-CSDN博客 2.创建虚拟环境conda create -n pytorch20 python3.9并输入conda activate pytorch20进入 3.更改镜像源conda/pip(只添加三个pip源和conda源即可) 4.安装PyTorch(CPU版) 5.安装Pycharm并破解&…

猫咪检测系统源码分享

猫咪检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

USDT自动化交易【Pinoex】【自动化分析】【ChatGPT量化脚本】

Pinoex 是一个相对较新的加密货币交易平台,虽然具体的自动交易算法细节对外部用户可能并不公开,但我们可以讨论一般情况下加密货币自动交易算法的常见策略和方法。以下是一些可能会被类似平台或个人交易者使用的自动交易算法和策略。 1. 市场制造商&…

Google 扩展 Chrome 安全和隐私功能

过去一周,谷歌一直在推出新特性和功能,旨在让用户在 Chrome 上的桌面体验更加安全,最新的举措是扩展在多个设备上保存密钥的功能。 到目前为止,Chrome 网络用户只能将密钥保存到 Android 上的 Google 密码管理器,然后…

计算机网络17——IM聊天系统——客户端核心处理类框架搭建

目的 拆开客户端和服务端,使用Qt实现客户端,VS实现服务端 Qt创建项目 Qt文件类型 .pro文件:配置文件,决定了哪些文件参与编译,怎样参与编译 .h .cpp .ui:画图文件 Qt编码方式 Qt使用utf-8作为编码方…

从零开始学习TinyWebServer

写在前面 项目参考:https://github.com/qinguoyi/TinyWebServer 写作框架/图参考:https://blog.csdn.net/qq_52313711/article/details/136356042?spm1001.2014.3001.5502 原本计划是,先将项目代码大概看一遍,然后再着手实现一下…

《高等代数》线性相关和线性无关(应用)

说明:此文章用于本人复习巩固,如果也能帮到大家那就更加有意义了。 注:1)线性相关和线性无关的证明方法中较为常用的方法是利用秩和定义来证明。 2)此外,线性相关和线性无关的证明常常也会用到反证法。 3&…

ChatGPT 4o 使用指南 (9月更新)

首先基础知识还是要介绍得~ 一、模型知识: GPT-4o:最新的版本模型,支持视觉等多模态,OpenAI 文档中已经更新了 GPT-4o 的介绍:128k 上下文,训练截止 2023 年 10 月(作为对比,GPT-4…

play-with-docker使用指南

Play-with-Docker(PWD)是一个在线平台,提供免费的 Docker 实验环境。它允许用户在浏览器中创建和管理 Docker 容器,适合学习和实验。国内访问需要借助于魔法工具,否则可能无法访问哦。 网站地址:https://labs.play-with-docker.com/ 一、登录play-with-docker 点击页面上…

深度学习自编码器 - 去噪自编码器篇

序言 在深度学习的广阔天地中,自编码器作为一种强大的无监督学习工具,通过重构输入数据的方式,不仅实现了数据的有效压缩,还探索了数据的内在表示。而去噪自编码器( Denoising Autoencoder, DAE \text{Denoising Auto…

Java | Leetcode Java题解之第424题替换后的最长重复字符

题目&#xff1a; 题解&#xff1a; public class Solution {public int characterReplacement(String s, int k) {int len s.length();if (len < 2) {return len;}char[] charArray s.toCharArray();int left 0;int right 0;int res 0;int maxCount 0;int[] freq n…

C++:多态(协变,override,final,纯虚函数抽象类,原理)

目录 编译时多态 函数重载 模板 运行时多态 多态的实现 实现多态的条件 协变 析构函数的重写 override 关键字 final 关键字 重载、重写、隐藏对比 纯虚函数和抽象类 多态的原理 多态是什么&#xff1f; 多态就是有多种形态 多态有两种&#xff0c;分别是编译时…

黑马智数Day1

src文件夹 src 目录指的是源代码目录&#xff0c;存放项目应用的源代码&#xff0c;包含项目的逻辑和功能实现&#xff0c;实际上线之后在浏览器中跑的代码就是它们 apis - 业务接口 assets - 静态资源 &#xff08;图片&#xff09; components - 组件 公共组件 constants…