Stable Diffusion 使用详解(11)--- 场景ICON制作

目录

背景

controlNet

整体描述

Canny

Lineart

Depth

实际使用

AI绘制需求

绘制过程

PS打底

场景模型选择

设置提示词及绘制参数

controlnet 设置

canny 边缘

depth 深度

lineart 线稿

效果


背景

这段时间不知道为啥小伙伴似乎喜欢制作很符合自己场景的ICON。其实,你如果认真看了本专栏前面几节的内容,应该说这个问题很简单。但是总有小伙伴按照别人的safetensor 或者checkpoint 文件无法做出别人的效果,做出来总是一个很奇怪的图案。如果你也是这种情况,就说明你还没有入门炼丹师行业。Stable Diffusion 作画的机理及使用前面已经讲了很多。AI作画的好处就是天马行空,不管是文生图 还是 图生图,都是一样的。这种灵活性赋予AI作画创造性的同时,也使得AI作画无法被指定的实物约束。这个时候一定要使用 controlnet。controlnet相当于是在赋予AI创造性的同时,告诉AI 作画,你的发挥空间必须遵循我的limitation 约束。本质上,stable diffusion 有很多东西都是在约束AI的 ‘创造力’,使得创造出的东西符合 平时人们的观感。最简单的 正负提示词,随机种子,到你套用的模型,无论是比较小的Lora,还是比较完整的checkpoint 都是如此,训练的本质你可以理解为其实就是约束AI的创造行为,不要让AI天马行空的乱绘制。controlnet 在这里面属于一种比较强的约束,在稍微高级一点的 stable diffsuion,作为炼丹师入门的AI 绘画技能必须要掌握。我就任意选一个AI icon 的例子,看看怎么处理。

controlNet

整体描述

前面讲过他了,为什么别人做出来的icon 不是胡乱的四不像,而你根据同样的配置做出来是乱七八糟?就是因为 controlnet 在大多数时候,炼丹师对  controlnet的操作不会被保存,这需要你自己选择合适的controlNet model。有时候甚至需要多个controlNet 的叠加。controlNet 发展到现在,有近20种了吧,好像还不止。但是万变不离其宗,从功能上划分,有约束形态的openopse,有约束外形的canny,lineart,有控制深浅的 depth,有控制风格及颜色变迁的P2P,还有控制语义分割的seg等等。绘制出来形状不对,多半是没有喂给 stable diffusion 合适的边缘。我就在讲一下这部分吧。

模型,相较于Canny,Lineart提取的线稿更加精细,细节更加丰富。Lineart提供了多种预处理器,如lineart_anime(动漫线稿控制)、lineart_anime_denoise(动漫线稿控制去噪)、lineart_coarse(粗略线提取)、lineart_realistic(写实线提取)和lineart_standard(标准线稿提取)等,以满足不同用户的需求。这些预处理器能够更准确地提取出图像中的线稿信息,进而生成以线稿为框架的新图像。

Canny

Canny是一种边缘检测算法,能够很好地识别出图像内各对象的边缘轮廓。在ControlNet中,Canny模型通过调节低阈值和高阈值来控制边缘检测的精细程度。低阈值越低,线条越复杂;高阈值越高,线条越简单。这种控制方式使得用户可以根据需要,精确控制图像的边缘信息,进而生成与原图构图相似的画面,但可以通过关键词调整颜色、细节等。

Lineart

Lineart是ControlNet 1.1版本中新增的模型,相较于Canny,Lineart提取的线稿更加精细,细节更加丰富。Lineart提供了多种预处理器,如lineart_anime(动漫线稿控制)、lineart_anime_denoise(动漫线稿控制去噪)、lineart_coarse(粗略线提取)、lineart_realistic(写实线提取)和lineart_standard(标准线稿提取)等,以满足不同用户的需求。这些预处理器能够更准确地提取出图像中的线稿信息,进而生成以线稿为框架的新图像。

Depth

Depth是一种深度估计模型,它通过分析输入图像的深度信息,生成具有透视效果的图像。在ControlNet中,Depth模型不仅能够帮助用户固定角色姿势的轮廓,还能起到固定场景透视效果的作用。浅色区域意味着它离用户更近,而深色区域则离用户更远。Depth模型在处理角色图像时,可能会丢失部分内部细节(如面部表情等),但它能够很好地保留物体的轮廓和场景的透视效果。此外,Depth模型还提供了不同的变体,如Depth Leres(++)和Depth Zoe,它们各自具有不同的特点和应用场景。

实际使用

AI绘制需求

假设我们项目需要打一个app icon,是一个搜索图标,正方形,竖排显示搜索两个字。

绘制过程

PS打底

我希望是立体效果,我还是用PS打底,先做一个立体字出来。长这样:

当然如果你搞不定或者没有学过PS,直接用mspaint等绘制一张2D的搜索也还是可以的。但是效果可能没有这样做好。

场景模型选择

我想绘制出来有点金属质感,找一个带有金属质感的lora 。

这个模型比较符合我的预期。看下底膜,没有的话,提前下载或者加入。这里使用的是 

设置提示词及绘制参数

hjymechatype,mecha,no humans,science fiction,vehicle focus,shadow,wheel,spacecraft,gradient background,gradient,machinery,robot,grey background,white background,ground vehicle,thrusters,blue led lighting,shining,metal,pip wire on surface,line shape led lighting,chrome,gold trim,

Deep Negative V1.x,EasyNegative,

Lora 权重 我设置的是 0.8

如果只是设置上述的,确实绘制出来什么都不是,因为你没有进一步强制约束Stable diffusion,到底绘制什么东西,图形的直观限制总比那些虚无缥缈的提示词来的直接,我这说法其实不太对,提示词也同样重要。这里我只是为了突出 controlnet 的重要性,你理解就行。

controlnet 设置

canny 边缘

depth 深度

lineart 线稿

你可能会问上了canny为什么还要上 lineart,因为在极度追求细节的环境下,canny 可能控制不住,或者说需要两者叠加比较出效果。因为字体icon 的绘制不像其他类型,不能走形,否则不知道你绘制的是什么。

效果

  

仔细看下,还是有细微的差别。当然你可以选择其他Lora 模型绘制不一样的icon 效果。

当然你可以适当修改提示词,

water,bubble,air bubble,black background,monochrome,greyscale,

greyscale 突出了其银灰色系

换一个水波的Lora 看看效果:

btw,另一个小技巧,如果只是风格类的转换,你已经用AI完成了一幅作品,当cn 都控制起来有点费劲,除了加高权重,还可以看下随机种子数,将seed 搞过来,有时候会事倍功半。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429111.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发(HarmonyOS)组件化浅谈

众所周知,现在组件化在移动开发中是很常见的,那么组件化有哪些好处: 1. 提高代码复用性:组件化允许将应用程序的不同功能模块化,使得这些模块可以在不同的项目中重复使用,从而提高开发效率并减少重复工作。…

LabVIEW编程能力如何能突飞猛进

要想让LabVIEW编程能力实现突飞猛进,需要采取系统化的学习方法,并结合实际项目进行不断的实践。以下是一些提高LabVIEW编程能力的关键策略: 1. 扎实掌握基础 LabVIEW的编程本质与其他编程语言不同,它是基于图形化的编程方式&…

行业人工智能研究-Python自监督方式学习图像表示算法

学术界人工智能研究落后于工业界 摘要 行业或工业界在人工智能研究上超出学术界,并占据着大量的计算力,数据集和人才诱人的薪水和明朗的预期吸引大量人才离开学术界,涌入行业或工业界即使,比如Meta开源其人工智能模型&#xff0…

小程序地图展示poi帖子点击可跳转

小程序地图展示poi帖子点击可跳转 是类似于小红书地图功能的需求 缺点 一个帖子只能有一个点击事件,不适合太复杂的功能,因为一个markers只有一个回调回调中只有markerId可以使用。 需求介绍 页面有地图入口,点开可打开地图界面地图上展…

python:编写一个函数查找字符串中的最长公共前缀

最近在csdn网站上刷到一个题目,题目要求编写一个函数查找字符串中的最长公共前缀,题目如下: 给出的答案如下: from typing import List def longestCommonPrefix(strs:List[str]) -> str:if len(strs) 0:return i 0 #代…

2024/9/21 数学20题

常见概率可加性:

网络安全详解

目录 引言 一、网络安全概述 1.1 什么是网络安全 1.2 网络安全的重要性 二、网络安全面临的威胁 2.1 恶意软件(Malware) 2.2 网络钓鱼(Phishing) 2.3 中间人攻击(Man-in-the-Middle Attack) 2.4 拒…

Mac 搭建仓颉语言开发环境(Cangjie SDK)

文章目录 仓颉编程语言通用版本SDK Beta试用报名仓颉语言文档注册 GitCode登录 GitCode 下载 Cangjie SDK配置环境变量VSCode 插件VSCode 创建项目 仓颉编程语言通用版本SDK Beta试用报名 https://wj.qq.com/s2/14870499/c76f/ 仓颉语言文档 https://developer.huawei.com/c…

Redis——持久化策略

Redis持久化 Redis的读写操作都是在内存上,所以Redis性能高。 但是当重启的时候,或者因为特殊情况导致Redis崩了,就可能导致数据的丢失。 所以Redis采取了持久化的机制,重启的时候利用之间持久化的文件实现数据的恢复。 Redis提…

Golang | Leetcode Golang题解之第424题替换后的最长重复字符

题目: 题解: func characterReplacement(s string, k int) int {cnt : [26]int{}maxCnt, left : 0, 0for right, ch : range s {cnt[ch-A]maxCnt max(maxCnt, cnt[ch-A])if right-left1-maxCnt > k {cnt[s[left]-A]--left}}return len(s) - left }f…

PyCharm与Anaconda超详细安装配置教程

1、安装Anaconda(过程)-CSDN博客 2.创建虚拟环境conda create -n pytorch20 python3.9并输入conda activate pytorch20进入 3.更改镜像源conda/pip(只添加三个pip源和conda源即可) 4.安装PyTorch(CPU版) 5.安装Pycharm并破解&…

猫咪检测系统源码分享

猫咪检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vision …

USDT自动化交易【Pinoex】【自动化分析】【ChatGPT量化脚本】

Pinoex 是一个相对较新的加密货币交易平台,虽然具体的自动交易算法细节对外部用户可能并不公开,但我们可以讨论一般情况下加密货币自动交易算法的常见策略和方法。以下是一些可能会被类似平台或个人交易者使用的自动交易算法和策略。 1. 市场制造商&…

Google 扩展 Chrome 安全和隐私功能

过去一周,谷歌一直在推出新特性和功能,旨在让用户在 Chrome 上的桌面体验更加安全,最新的举措是扩展在多个设备上保存密钥的功能。 到目前为止,Chrome 网络用户只能将密钥保存到 Android 上的 Google 密码管理器,然后…

计算机网络17——IM聊天系统——客户端核心处理类框架搭建

目的 拆开客户端和服务端,使用Qt实现客户端,VS实现服务端 Qt创建项目 Qt文件类型 .pro文件:配置文件,决定了哪些文件参与编译,怎样参与编译 .h .cpp .ui:画图文件 Qt编码方式 Qt使用utf-8作为编码方…

从零开始学习TinyWebServer

写在前面 项目参考:https://github.com/qinguoyi/TinyWebServer 写作框架/图参考:https://blog.csdn.net/qq_52313711/article/details/136356042?spm1001.2014.3001.5502 原本计划是,先将项目代码大概看一遍,然后再着手实现一下…

《高等代数》线性相关和线性无关(应用)

说明:此文章用于本人复习巩固,如果也能帮到大家那就更加有意义了。 注:1)线性相关和线性无关的证明方法中较为常用的方法是利用秩和定义来证明。 2)此外,线性相关和线性无关的证明常常也会用到反证法。 3&…

ChatGPT 4o 使用指南 (9月更新)

首先基础知识还是要介绍得~ 一、模型知识: GPT-4o:最新的版本模型,支持视觉等多模态,OpenAI 文档中已经更新了 GPT-4o 的介绍:128k 上下文,训练截止 2023 年 10 月(作为对比,GPT-4…

play-with-docker使用指南

Play-with-Docker(PWD)是一个在线平台,提供免费的 Docker 实验环境。它允许用户在浏览器中创建和管理 Docker 容器,适合学习和实验。国内访问需要借助于魔法工具,否则可能无法访问哦。 网站地址:https://labs.play-with-docker.com/ 一、登录play-with-docker 点击页面上…

深度学习自编码器 - 去噪自编码器篇

序言 在深度学习的广阔天地中,自编码器作为一种强大的无监督学习工具,通过重构输入数据的方式,不仅实现了数据的有效压缩,还探索了数据的内在表示。而去噪自编码器( Denoising Autoencoder, DAE \text{Denoising Auto…