【机器学习】--- 决策树与随机森林

在这里插入图片描述

文章目录

  • 决策树与随机森林的改进:全面解析与深度优化
    • 目录
    • 1. 决策树的基本原理
    • 2. 决策树的缺陷及改进方法
      • 2.1 剪枝技术
      • 2.2 树的深度控制
      • 2.3 特征选择的优化
    • 3. 随机森林的基本原理
    • 4. 随机森林的缺陷及改进方法
      • 4.1 特征重要性改进
      • 4.2 树的集成方法优化
      • 4.3 随机森林的并行化处理
      • 4.4 使用极端随机树(Extra Trees)
    • 5. 代码示例:如何在实践中使用这些改进
      • 5.1 决策树的剪枝与优化
      • 5.2 随机森林的改进与并行化实现
    • 6. 总结

决策树与随机森林的改进:全面解析与深度优化

决策树和随机森林是机器学习中的经典算法,因其易于理解和使用广泛而备受关注。尽管如此,随着数据集规模和复杂性增加,这些算法的性能可能会遇到瓶颈。因此,研究决策树与随机森林的改进成为了机器学习领域的一个热点话题。本博客将详细探讨决策树与随机森林的基本原理、其存在的问题以及如何通过多种改进方法提升其性能。

目录

1. 决策树的基本原理

决策树是一种贪心算法,通过递归地分裂数据集构建树形结构。其主要目标是通过最大化信息增益或最小化基尼系数等指标,在每一步找到最佳的特征进行分割。

决策树的构建步骤包括:

  • 选择最佳的特征和阈值
  • 递归地将数据集划分为子集
  • 构建叶节点,存储预测的类别或值
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split# 加载数据集
data = load_iris()
X, y = data.data, data.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建决策树分类器
tree = DecisionTreeClassifier()
tree.fit(X_train, y_train)# 评估模型
accuracy = tree.score(X_test, y_test)
print(f"决策树准确率: {accuracy:.4f}")

在上面的代码中,我们使用了 sklearnDecisionTreeClassifier 来训练决策树,并对其进行简单的性能评估。

2. 决策树的缺陷及改进方法

尽管决策树在许多情况下表现良好,但它存在一些问题,如过拟合、对噪声数据敏感以及对训练集的极端依赖。这些问题可以通过以下几种方式改进:

2.1 剪枝技术

决策树容易陷入过拟合的困境,尤其是在构建过于复杂的树结构时。剪枝是一种常见的解决方案,分为预剪枝和后剪枝:

  • 预剪枝:在构建树的过程中设定限制条件,如最大深度、最小样本数等,提前终止树的生长。
  • 后剪枝:在树构建完成后,通过回溯移除冗余节点,从而简化树结构。
# 设置决策树的最大深度为3
pruned_tree = DecisionTreeClassifier(max_depth=3)
pruned_tree.fit(X_train, y_train)# 评估模型
pruned_accuracy = pruned_tree.score(X_test, y_test)
print(f"剪枝后的决策树准确率: {pruned_accuracy:.4f}")

2.2 树的深度控制

树的深度过大会导致过拟合,而过小则会导致欠拟合。因此,设置合适的最大深度是一个非常重要的参数调优步骤。

# 使用网格搜索进行最大深度调参
from sklearn.model_selection import GridSearchCVparam_grid = {'max_depth': [3, 5, 10, 20, None]}
grid_search = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=5)
grid_search.fit(X_train, y_train)print(f"最佳深度: {grid_search.best_params_}")

2.3 特征选择的优化

传统的决策树使用信息增益或基尼系数来选择特征,但在某些数据集上,这些标准可能并不理想。可以考虑引入新的特征选择标准,比如均方误差(MSE)或基于正则化的方法。

# 基于均方误差的决策树回归模型
from sklearn.tree import DecisionTreeRegressorregressor = DecisionTreeRegressor(criterion='mse')
regressor.fit(X_train, y_train)

3. 随机森林的基本原理

随机森林是一种集成学习方法,通过生成多个决策树并结合它们的预测结果来提高模型的稳定性和准确性。它通过引入随机性(随机特征选择和数据子采样)来减少过拟合的风险。

from sklearn.ensemble import RandomForestClassifier# 创建随机森林分类器
forest = RandomForestClassifier(n_estimators=100)
forest.fit(X_train, y_train)# 评估随机森林模型
forest_accuracy = forest.score(X_test, y_test)
print(f"随机森林准确率: {forest_accuracy:.4f}")

4. 随机森林的缺陷及改进方法

尽管随机森林具有许多优点,但它也有一些缺点,如计算开销较大、特征重要性计算偏差等。以下是一些改进方法。

4.1 特征重要性改进

随机森林中的特征重要性通常基于每个特征在决策树中的分裂贡献。但这种方法容易偏向高基数特征。可以通过正则化方法或基于模型输出的特征重要性计算进行改进。

# 提取特征重要性
importances = forest.feature_importances_
for i, importance in enumerate(importances):print(f"特征 {i}: 重要性 {importance:.4f}")

4.2 树的集成方法优化

除了随机森林,还可以采用更复杂的集成方法,如极端梯度提升(XGBoost)或LightGBM,它们通过优化决策树的构建过程,提高了模型的性能。

from xgboost import XGBClassifier# 使用XGBoost训练模型
xgb = XGBClassifier(n_estimators=100)
xgb.fit(X_train, y_train)# 评估XGBoost模型
xgb_accuracy = xgb.score(X_test, y_test)
print(f"XGBoost准确率: {xgb_accuracy:.4f}")

4.3 随机森林的并行化处理

随机森林的另一个问题是其计算量较大。通过并行化处理,可以加速模型的训练过程。n_jobs 参数可以控制并行化的线程数。

# 并行化的随机森林
parallel_forest = RandomForestClassifier(n_estimators=100, n_jobs=-1)
parallel_forest.fit(X_train, y_train)

4.4 使用极端随机树(Extra Trees)

极端随机树(Extra Trees)是一种与随机森林类似的集成方法,不同之处在于它在选择分割点时使用完全随机的方式,从而进一步提高模型的泛化能力。

from sklearn.ensemble import ExtraTreesClassifier# 创建极端随机树分类器
extra_trees = ExtraTreesClassifier(n_estimators=100)
extra_trees.fit(X_train, y_train)# 评估极端随机树模型
extra_trees_accuracy = extra_trees.score(X_test, y_test)
print(f"极端随机树准确率: {extra_trees_accuracy:.4f}")

5. 代码示例:如何在实践中使用这些改进

5.1 决策树的剪枝与优化

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_wine# 加载数据集
data = load_wine()
X, y = data.data, data.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建带剪枝的决策树
tree = DecisionTreeClassifier(max_depth=5, min_samples_split=10, min_samples_leaf=5)
tree.fit(X_train, y_train)# 评估模型
accuracy = tree.score(X_test, y_test)
print(f"剪枝后的决策树准确率: {accuracy:.4f}")

5.2 随机森林的改进与并行化实现

from sklearn.ensemble import RandomForestClassifier# 创建并行化的随机森林分类器
parallel_forest = RandomForestClassifier(n_estimators=200, max_depth=10, n_jobs=-1, random_state=42)
parallel_forest.fit(X_train, y_train)# 评估并行化随机森林模型
accuracy = parallel_forest.score(X_test, y_test)
print(f"并行化随机森林准确率: {accuracy:.4f}")

6. 总结

决策树和随机森林作为经典的机器学习算法,已经在众多领域得到了广泛应用。然而,它们的性能在面对复杂的数据时可能会出现瓶颈。通过剪枝、树深度控制、优化特征选择等方法,我们可以提高决策树的泛化能力。同时,通过特征重要性改进、极端随机树的引入和并行化处理,可以在提升随机森林性能的同时减少计算资源的消耗。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429227.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript ---案例(统计字符出现次数)

统计字符出现次数 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevice-w…

深度学习之微积分预备知识点(2)

极限&#xff08;Limit&#xff09; 定义&#xff1a;表示某一点处函数趋近于某一特定值的过程&#xff0c;一般记为 极限是一种变化状态的描述&#xff0c;核心思想是无限靠近而永远不能到达 公式&#xff1a; 表示 x 趋向 a 时 f(x) 的极限。 知识点口诀解释极限的存在左…

LabVIEW软件维护的内容是什么呢?

LabVIEW软件维护涉及多个方面&#xff0c;确保程序的正常运行和长期稳定性。维护内容包括以下几个方面&#xff1a; 1. Bug修复 在开发和运行过程中&#xff0c;可能会出现各种软件问题或缺陷&#xff08;bugs&#xff09;。维护工作之一就是识别这些问题并通过修复程序中的代…

uniapp child.onFieldChange is not a function

uni-forms // 所有子组件参与校验,使用 for 可以使用 awiatfor (let i in childrens) {const child childrens[i];let name realName(child.name);if (typeof child.onFieldChange function) {const result await child.onFieldChange(tempFormData[name]);if (result) {…

【网络】TCP/IP 五层网络模型:网络层

最核心的就是 IP 协议&#xff0c;是一个相当复杂的协议 TCP 详细展开讲解&#xff0c;是因为 TCP 确实在开发中非常关键&#xff0c;经常用到&#xff0c;IP 则不同&#xff0c;和普通程序猿联系比较浅。和专门开发网络的程序猿联系比较紧密&#xff08;开发路由器&#xff0…

Qt5详细安装教程(包含导入pycharm)

1.自行下载Qt 2.双击进行安装 3.设置完成后勾选接受&#xff0c;跳转下一步 4.可选择安装位置&#xff0c;比较习惯安装在D盘 5.根据需求勾选对应组件安装 6.安装完成后&#xff0c;打开pycharm&#xff0c;进入settings—>选择ExternalTools&#xff0c;根据以下步骤进行配…

【WEB】EZ_Host

1、 2、解答 http://8762a9b0-5aa3-49f8-b8d2-54e4cb0746cc.www.polarctf.com:8090/?hostlocalhost;lshttp://8762a9b0-5aa3-49f8-b8d2-54e4cb0746cc.www.polarctf.com:8090/?hostlocalhost;cat flag即可看到答案

数据中台系统产品原型RP原型Axure高保真交互原型 源文件分享

在数字化时代&#xff0c;数据已经成为企业最宝贵的资产之一。为了更好地管理和利用这些数据&#xff0c;这边为大家整理了一套数据中台Axure高保真原型。这套原型致力于为企业提供全方位的数据服务&#xff0c;助力企业实现数据驱动的创新发展。 下载及预览地址&#xff1a;h…

828华为云征文|Flexus云服务器X实例部署宝塔运维面板

本次华为云Flexus云服务器X实例部署宝塔运维面板教学&#xff0c;这次是推陈出新啊 之前的云耀云服务器L实例已经很不错了&#xff0c;大力赞叹华为云的 同时感谢华为云提供优惠卷&#xff0c;只能说白嫖真是太棒了 华为云近期正在筹办华为云828企业节活动&#xff0c;90款免…

java重点学习-设计模式

十三 设计模式 工厂模式&#xff1a;spring中使用&#xff08;目的是&#xff1a;解耦&#xff09; 1.简单工厂 所有的产品都共有一个工厂&#xff0c;如果新增产品&#xff0c;则需要修改代码&#xff0c;违反开闭原则是一种编程习惯&#xff0c;可以借鉴这种编程思路 2.工厂方…

嵌入式入门小工程

此代码基于s3c2440 1.点灯 //led.c void init_led(void) {unsigned int t;t GPBCON;t & ~((3 << 10) | (3 << 12) | (3 << 14) | (3 << 16));t | (1 << 10) | (1 << 12) | (1 << 14) | (1 << 16);GPBCON t; }void le…

一个基于Gin + Vue 开发前后端分离的微型进存销系统,专为小微企业量身定制

前言 在这个信息化高速发展的时代&#xff0c;企业管理软件的需求日益增长&#xff0c;然而市面上许多现有的管理系统要么过于复杂&#xff0c;不适合小型企业的快速的需求&#xff1b;要么价格高昂&#xff0c;让许多初创企业望而却步。 针对这些痛点&#xff0c;我们迫切需…

01-Mac OS系统如何下载安装Python解释器

目录 Mac安装Python的教程 mac下载并安装python解释器 如何下载和安装最新的python解释器 访问python.org&#xff08;受国内网速的影响&#xff0c;访问速度会比较慢&#xff0c;不过也可以去我博客的资源下载&#xff09; 打开历史发布版本页面 进入下载页 鼠标拖到页面…

ETCD学习使用

一、介绍 etcd&#xff08;分布式键值存储&#xff09;是一个开源的分布式系统工具&#xff0c;用于可靠地存储和提供键值对数据。etcd 通常通过 HTTP 或 gRPC 提供 API&#xff0c;允许应用程序通过简单的接口与其交互。由于其可靠性和稳定性&#xff0c;etcd 在构建可扩展、分…

【AI视频】AI虚拟主播制作网站推荐

一、什么是AI虚拟主播&#xff1f; AI虚拟主播是一种利用人工智能技术打造的虚拟主持人&#xff0c;也被称为数字虚拟主持人。它们通常是由人工智能技术和三维建模技术结合而成&#xff0c;可以在各种平台上进行主持工作&#xff0c;如新闻报道、电商直播、综艺娱乐等。 AI虚…

使用GPU 加速 Polars:高效解决大规模数据问题

Polars 最近新开发了一个可以支持 GPU 加速计算的执行引擎。这个引擎可以对超过 100GB 的数据进行交互式操作能。本文将详细讨论 Polars 中DF的概念、GPU 加速如何与 Polars DF协同工作&#xff0c;以及使用新的 CUDA 驱动执行引擎可能带来的性能提升。 Polars 核心概念 Polar…

JMeter 中使用 Gson 操作请求中的Boby参数

背景 使用org.json.JSONObject 转换&#xff0c;与原Body参数顺序发生变化&#xff0c;原因&#xff1a;JSONObject内部是用Hashmap来存储的&#xff0c;本质上是一个无序的键值对集合&#xff0c;不应依赖字段的添加顺序。 为解决org.json.JSONObject 输出顺序问题&#xff…

[图解]静态关系和动态关系

1 00:00:01,060 --> 00:00:04,370 首先我们来看静态关系和动态关系 2 00:00:06,160 --> 00:00:10,040 我们要尽量基于静态关系来建立动态关系 3 00:00:11,740 --> 00:00:13,740 不能够在没有这个的基础上 4 00:00:14,220 --> 00:00:17,370 没有这个的情况下就胡…

【JVM】垃圾回收机制|死亡对象的判断算法|垃圾回收算法

思维导图 目录 1.找到谁是垃圾 1&#xff09;引用计数&#xff08;不是JVM采取的方式&#xff0c;而是Python/PHP的方案&#xff09; 2&#xff09;可达性分析&#xff08;是JVM采用的方案&#xff09; 2.释放对应的内存的策略 1&#xff09;标记-清除&#xff08;并不实…

Linux 文件系统(下)

目录 一.文件系统 1.文件在磁盘上的存储方式 a.盘面、磁道和扇区 b.分区和分组 2.有关Block group相关字段详解 a.inode编号 b.inode Table&#xff08;节点表&#xff09; c.Data blocks&#xff08;数据区&#xff09; d.小结 二.软硬链接 1.软链接 a.软链接的创建…