变电站缺陷数据集8307张,带xml标注和txt标注,可以直接用于yolo训练

变电站缺陷数据集8307张,
带xml标注和txt标注,可以直接用于yolo训练,赠附五个脚本

变电站缺陷数据集

数据集概述

变电站缺陷数据集是一个专门针对变电站设备和环境缺陷检测的图像数据集。该数据集包含了8307张经过标注的图像,旨在通过机器学习和计算机视觉技术来识别和分类变电站中的各种缺陷,如设备损坏、异常行为等。数据集同时提供了XML和TXT两种标注格式,可以直接用于YOLO系列目标检测模型的训练。

数据集特点
  1. 全面性:数据集涵盖了变电站设备的各种缺陷类型,包括但不限于设备损坏、异常行为等。
  2. 详细标注:每张图像都带有详细的标注信息,包括对象的类别、边界框坐标等。
  3. 兼容性强:提供了XML和TXT两种标注格式,既适合传统的基于XML的标注方式,也方便YOLO模型的直接使用。
  4. 实用性:数据集可以直接应用于变电站的安全监控和设备维护,帮助及时发现并处理潜在的安全隐患。
数据集构成

  • 图像数量:8307张
  • 标注格式
    • XML格式:适用于多种基于XML的标注工具和模型训练。
    • TXT格式:适用于YOLO系列目标检测模型的训练。

数据集用途
  • 缺陷检测:用于训练和测试识别变电站中设备缺陷的算法。
  • 安全监控:在实际应用中,可以用于自动化监控变电站设备的状态,及时发现并处理安全隐患。
  • 故障预防:帮助电力部门提前预警,减少由于设备缺陷导致的事故风险。
  • 研究与开发:为研究人员提供一个基准数据集,用于比较不同算法的效果。
  • 教育与培训:作为教学资源,帮助学生理解计算机视觉和机器学习的基本概念。
数据集获取

变电站缺陷数据集可以从相关的科研机构、数据提供商或者通过开源社区获取。获取数据集时,请遵循数据集发布的许可协议,确保合法使用。

示例代码

下面是一个简单的示例代码,展示了如何使用Python加载和预览变电站缺陷数据集中的图像及其XML格式的标注信息。

1import os
2import random
3import xml.etree.ElementTree as ET
4import matplotlib.pyplot as plt
5from PIL import Image
6
7# 数据集目录路径
8data_dir = 'path/to/transformer_station_defect_dataset'
9image_dir = os.path.join(data_dir, 'images')
10annotation_dir = os.path.join(data_dir, 'annotations_xml')
11
12# 随机选择一张图像
13image_files = os.listdir(image_dir)
14image_file = random.choice(image_files)
15image_path = os.path.join(image_dir, image_file)
16
17# 加载图像
18image = Image.open(image_path)
19
20# 加载XML标注
21xml_file = os.path.splitext(image_file)[0] + '.xml'
22xml_path = os.path.join(annotation_dir, xml_file)
23tree = ET.parse(xml_path)
24root = tree.getroot()
25
26# 绘制边界框
27fig, ax = plt.subplots(1, figsize=(10, 10))
28ax.imshow(image)
29ax.axis('off')
30
31for obj in root.findall('object'):
32    bbox = obj.find('bndbox')
33    xmin = int(bbox.find('xmin').text)
34    ymin = int(bbox.find('ymin').text)
35    xmax = int(bbox.find('xmax').text)
36    ymax = int(bbox.find('ymax').text)
37    label = obj.find('name').text
38    
39    ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, edgecolor='r', facecolor='none'))
40    ax.text(xmin, ymin, label, color='r', fontsize=8)
41
42plt.show()
YOLO标注格式转换

如果您需要将XML格式的标注转换为YOLO所需的TXT格式,可以使用以下Python代码示例:

1import os
2import xml.etree.ElementTree as ET
3
4# 数据集目录路径
5data_dir = 'path/to/transformer_station_defect_dataset'
6annotation_dir_xml = os.path.join(data_dir, 'annotations_xml')
7annotation_dir_yolo = os.path.join(data_dir, 'annotations_yolo')
8
9if not os.path.exists(annotation_dir_yolo):
10    os.makedirs(annotation_dir_yolo)
11
12# 类别映射字典
13class_map = {
14    'defect_type_1': 0,  # 替换为实际的类别名和索引
15    'defect_type_2': 1,
16    # 添加更多的类别
17}
18
19for xml_file in os.listdir(annotation_dir_xml):
20    if not xml_file.endswith('.xml'):
21        continue
22    
23    tree = ET.parse(os.path.join(annotation_dir_xml, xml_file))
24    root = tree.getroot()
25    
26    image_width = int(root.find('size/width').text)
27    image_height = int(root.find('size/height').text)
28    
29    with open(os.path.join(annotation_dir_yolo, os.path.splitext(xml_file)[0] + '.txt'), 'w') as f:
30        for obj in root.findall('object'):
31            label = obj.find('name').text.lower().strip()
32            if label in class_map:
33                class_id = class_map[label]
34                
35                bbox = obj.find('bndbox')
36                xmin = int(bbox.find('xmin').text)
37                ymin = int(bbox.find('ymin').text)
38                xmax = int(bbox.find('xmax').text)
39                ymax = int(bbox.find('ymax').text)
40                
41                x_center = (xmin + xmax) / 2.0
42                y_center = (ymin + ymax) / 2.0
43                w = xmax - xmin
44                h = ymax - ymin
45                
46                x_center /= image_width
47                y_center /= image_height
48                w /= image_width
49                h /= image_height
50                
51                f.write(f"{class_id} {x_center:.6f} {y_center:.6f} {w:.6f} {h:.6f}\n")

总结

此变电站缺陷数据集是一个高质量的数据集,涵盖了变电站设备的多种缺陷类型。数据集的特点是全面性、详细标注和兼容性强,能够满足不同研究需求。通过使用该数据集,研究者可以在变电站安全监控和设备维护领域推动技术进步,提高工作效率和安全性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429598.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java 入门指南:JVM(Java虚拟机)垃圾回收机制 —— 垃圾收集器

文章目录 垃圾回收机制Stop-the-World垃圾收集器垃圾收集器分类Serial 收集器Serial Old 收集器ParNew 收集器Parallel Scavenge 收集器Parallel Old 收集器CMS 收集器CMS 收集器缺点 G1 收集器G1 收集器特点G1 收集器的分代理念G1 收集器运作过程 垃圾回收机制 垃圾回收&…

【Linux笔记】如何将内容从一个文件复制到另一个文件

比如:将文件tmp_file.txt中的部分数据,复制到file01.txt中去 tmp_file.txt文中内容: file01.txt为空文档 一、使用vi编辑器 I、文件中直接使用:e 目标文件进行切换文件复制 1、打开被复制文件 vi tmp_file.txt 2、进入一般命令模式 默认情况为…

排序-----归并排序(递归版)

核心思想:假设数组前后两部分各自有序,然后各定义两个指针,谁小谁放到新开辟的数组里面,最后把新开辟的数组赋值给原数组就完成了。要使前后两部分有序就采用递归的方式,不断往下划分块,最后一层划分为两个…

SVM原理

SVM 这里由于过了很长时间 博主当时因为兴趣了解了下 博主现在把以前的知识放到博客上 作为以前的学习的一个结束 这些东西来自其他资料上 小伙伴看不懂英文的自行去翻译下吧 博主就偷个懒了 多维空间和低维空间 不一样的分法,将数据映射到高维 &…

鸿蒙OpenHarmony【轻量系统内核扩展组件(动态加载)】子系统开发

基本概念 在硬件资源有限的小设备中,需要通过算法的动态部署能力来解决无法同时部署多种算法的问题。以开发者易用为主要考虑因素,同时考虑到多平台的通用性,LiteOS-M选择业界标准的ELF加载方案,方便拓展算法生态。LiteOS-M提供类…

ZYNQ学习--AXI总线协议

一、AXI 总线简介 AXI(Advanced Extensible Interface)高级拓展总线是AMBA(Advanced Microcontroller Bus Architecture)高级微控制总线架构中的一个高性能总线协议,由ARM公司开发。AXI总线协议被广泛应用于高带宽、低…

PyQt5 导入ui文件报错 AttributeError: type object ‘Qt‘ has no attribute

问题描述: 利用 PyQt5 编写可视化界面是较为普遍的做法,但是使用全新UI版本的 Pycharm 修改之前正常的UI文件时,在没有动其他代码的情况下发现出现以下报错 AttributeError: type object Qt has no attribute Qt::ContextMenuPolicy::Defaul…

JavaEE: 深入探索TCP网络编程的奇妙世界(四)

文章目录 TCP核心机制TCP核心机制四: 滑动窗口为啥要使用滑动窗口?滑动窗口介绍滑动窗口出现丢包咋办? TCP核心机制五: 流量控制 TCP核心机制 上一篇文章 JavaEE: 深入探索TCP网络编程的奇妙世界(三) 书接上文~ TCP核心机制四: 滑动窗口 为啥要使用滑动窗口? 之前我们讨…

BERT的代码实现

目录 1.BERT的理论 2.代码实现 2.1构建输入数据格式 2.2定义BERT编码器的类 2.3BERT的两个任务 2.3.1任务一:Masked Language Modeling MLM掩蔽语言模型任务 2.3.2 任务二:next sentence prediction 3.整合代码 4.知识点个人理解 1.BERT的理论 B…

深度学习02-pytorch-08-自动微分模块

​​​​​​​ 其实自动微分模块,就是求相当于机器学习中的线性回归损失函数的导数。就是求梯度。 反向传播的目的: 更新参数, 所以会使用到自动微分模块。 神经网络传输的数据都是 float32 类型。 案例1: 代码功能概述: 该…

鸿蒙Harmony应用开发,数据驾驶舱 项目结构搭建

对于一个项目而言,在拿到我们的开发任务后,我们最重要的就是技术的选型。选型定下来了之后我们便开始脚手架的搭建,然后开始撸代码,开搞. 首先我们需要对一些常见依赖库的引入 我们需要再oh-package.json5的dependencies节点下面…

8--SpringBoot原理分析、注解-详解(面试高频提问点)

目录 SpringBootApplication 1.元注解 --->元注解 Target Retention Documented Inherited 2.SpringBootConfiguration Configuration Component Indexed 3.EnableAutoConfiguration(自动配置核心注解) 4.ComponentScan Conditional Co…

基于PHP的新闻管理系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于phpMySQL的新闻管理系统。…

JavaWeb--纯小白笔记03:servlet入门---动态网页的创建

笔记:index.html在tomcat中为默认的名字,html里面的语法不严谨。改配置文件要小心,不然容易删掉其他 Servlet:服务器端小程序,写动态网页需要用Servlet,普通的java类通过继承HttpServlet,可以响…

【GUI设计】基于Matlab的图像处理GUI系统(1),用matlab实现

博主简介:matlab图像代码项目合作(扣扣:3249726188) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本次案例是基于Matlab的图像处理GUI系统,用matlab实现。 本次内容主要分为两部分&a…

Why is OpenAI image generation Api returning 400 bad request in Unity?

题意:为什么 OpenAI 图像生成 API 在 Unity 中返回 400 Bad Request 错误? 问题背景: Im testing out dynamically generating images using OpenAI API in Unity. Amusingly, I actually generated most of this code from chatGPT. 我正在…

【笔记】第二节 轧制、热处理和焊接工艺

2.2 钢轨的轧制工艺 坯料进厂按标准验收, 然后装加热炉加热, 加热好的钢坯经高压水除鳞后进行轧制。轧出的钢轨经锯切、打印到中央冷床冷却, 然后装缓冷坑进行缓冷。缓冷后的钢轨进行矫直、轨端加工和端头淬火。钢轨入库前逐根进行探伤和外观检查。 钢轨的轧制 #mermaid-svg-…

foreach,for in和for of的区别

forEach 不能使用break return 结束并退出循环 for in 和 for of 可以使用break return; for in 遍历的是数组的索引(即键名),而for of遍历的是数组元素值。 for of 遍历的只是数组内的元素,而不包括数组的原型属性…

后端-navicat查找语句(单表与多表)

表格字段设置如图 语句&#xff1a; 1.输出 1.输出name和age列 SELECT name,age from student 1.2.全部输出 select * from student 2.where子语句 1.运算符&#xff1a; 等于 >大于 >大于等于 <小于 <小于等于 ! <>不等于 select * from stude…

JdbcTemplate常用方法一览AG网页参数绑定与数据寻址实操

JdbcTemplate是Spring框架中的一个重要组件&#xff0c;主要用于简化JDBC数据库操作。它提供了许多常用的方法&#xff0c;如查询、插入、更新、删除等。本文将介绍JdbcTemplate的常用方法及其使用方式&#xff0c;以及参数绑定和删除数据的方法。 一、JdbcTemplate常用方法 查…