基于YOLOv5的教室人数检测统计系统

基于YOLOv5的教室人数检测统计系统可以有效地用于监控教室内的学生数量,适用于多种应用场景,比如

  • 自动考勤、安全监控或空间利用分析
    在这里插入图片描述

以下是如何构建这样一个系统的概述,包括环境准备、数据集创建、模型训练以及如何处理不同类型的媒体输入。

代码布置

.
├── dataset # 数据集
│   ├── annotations # XML 标签
│   ├── images # 图片
│   └── labels # txt 标签
├── detect.sh # detect shell 脚本
├── hellodata.py # 数据探索、预处理
├── LICENSE
├── README.md
├── res
│   ├── demo_picture1.png # 样例图片
│   └── demo_picture2.png
├── runs
│   ├── detect # 训练后的文件结果
│   └── train # 训练后的权重
├── train.sh # train shell 脚本
├── xml2txt.py # 将 XML 转换为 txt 标签
└── yolov5 # 从 @ultralytics/yolov5 clone├── data│   ├── coco.yaml│   ├── headset.yaml # 自定义训练集│   ├── hyp.scratch.yaml│   ├── images # 存放 detect 输入数据│   │   ├── bus.jpg│   │   └── zidane.jpg│   └── videos # 存放 detect 输入数据├── detect.py├── Dockerfile├── hubconf.py├── models # 预训练模型 YAML 文件├── requirements.txt # Python 依赖库├── test.py├── train.py├── utils└── weights # 预训练权重

数据排布

目标检测 (Object Detection) 在教室人数统计上的应用尝试
先借助 YOLOv5 预训练模型对图片数据集进行训练,再测试多种输入流
数据集下载:Classroom Monitoring Dataset - kaggle
images 图片

partA 2000张,格式: [PartA_num].jpg
partB 2405张,格式:[PartB_num].jpg
annotations 标签,标注了图片中 目标的类别和坐标位置
partA 2000条,格式:[PartA_num].xml
partB 2405条,格式:[PartB_num].xml

主要工具包版本为 PyTorch 1.7.1+cu110 和 Python 3.8.5

代码运行

安装 Python 库依赖:pip3 install -r yolov5/requirements.txt
下载预训练权重,把下载的 .pt 文件部署在 yolov5/weights/ 路径下

代码训练

为了方便执行,编写了脚本 detect.sh 和 train.sh,分别进行训练与预测测试
根据训练效果调整 train.sh 文件中常用参数:

-epochs # 训练的 epoch,默认值 300
--batch-size # 默认值 16
--cfg yolov5s.yaml --weights '' # 从头开始训练
--cfg yolov5s.yaml --weights yolov5s.pt # 从预训练模型开始训练
--data # 数据集的配置文件,默认为 data/coco128.yaml
--resume # 是否从最新的 last.pt 中恢复训练,布尔值
--evolve # 进化超参数 (Evolve Hyperparameters),布尔值
--cache-images # 缓存图片可以更快的开始训练,布尔值
--weights # 初始化参数路径,默认值 ''
--adam # 使用 adam 优化器,布尔值

一般只需改动这两个脚本文件就可,如需训练自定义的数据集,请参考官方文档:Train Custom Data - YOLOv5 Documentation

其他

自定义数据集
观察数据
数据集大小
数据集样本
图像分辨率
数据预处理
数据清洗,观察发现,有一些图像的 label 存在缺失,在 XML 转换 TXT 的过程中一并丢弃
YOLOv5 原生预处理
搭建模型,可视化分析

分析与调整训练,提高模型泛化能力

结果

多视角 稳定识别!
demo 的 detect 结果:
在这里插入图片描述

最后

计算机视觉、图像处理、毕业辅导、作业帮助、代码获取,远程协助,代码定制,私聊会回复!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/429718.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

音乐项目,总结

今天的写的思路都挺简单的但是比较繁琐&#xff0c;这个查找&#xff0c;传文件的话可以了&#xff0c;但是没有用分片传送&#xff0c;然后在写音乐播放的处理&#xff0c;<歌单&#xff0c;二级评论&#xff0c;歌曲歌词滚轮播放>三个还没有实现&#xff0c;时间挺紧张…

开源免费的NAS系统-TrueNAS CORE上创建CentOS7虚拟机

目录 文章目录 目录1、说明2、准备工作2.1、准备安装镜像2.1、创建用户2.2、开启 ssh 服务2.3、设置用户权限2.4、上传系统镜像2.5、 添加虚拟机 3、开始安装系统3.1、启动虚拟机3.2、选择语言3.3、配置网络3.4、设置 root 密码3.5、删除光驱3.6、重启虚拟机3.7、使用 ssh 连接…

【2024】前端学习笔记7-颜色-位置-字体设置

学习笔记 1.定义&#xff1a;css2.颜色&#xff1a;color3.字体相关属性&#xff1a;font3.1.字体大小&#xff1a;font-size3.2.字体风格&#xff1a;font - style3.3.字体粗细&#xff1a;font - weight3.4.字体族&#xff1a;font - family 4.位置&#xff1a;text-align 1.…

【Godot4.3】2D程序生成植物概论

概述 Godot的2D程序化植物生成是我一直想要探讨的一个内容&#xff0c;但是一直没有真正开动&#xff0c;在刚过去的中秋节假期期间&#xff0c;在老家无聊&#xff0c;在一个素描本上构思了一系列想法。本篇就基于这些自己的想法介绍一下程序化植物生成的基本思路。不一定对&…

Linux:login shell和non-login shell以及其配置文件

相关阅读 Linuxhttps://blog.csdn.net/weixin_45791458/category_12234591.html?spm1001.2014.3001.5482 shell是Linux与外界交互的程序&#xff0c;登录shell有两种方式&#xff0c;login shell与non-login shell&#xff0c;它们的区别是读取的配置文件不同&#xff0c;本…

Spring6梳理10—— 依赖注入之注入数组类型属性

以上笔记来源&#xff1a; 尚硅谷Spring零基础入门到进阶&#xff0c;一套搞定spring6全套视频教程&#xff08;源码级讲解&#xff09;https://www.bilibili.com/video/BV1kR4y1b7Qc 目录 10 依赖注入之注入数组类型属性 10.1 创建Emp实体类&#xff0c;Dept实体类 10.2…

Linux学习笔记(2)

Linux学习笔记&#xff08;2&#xff09; 知识点&#xff1a; 1.打包、压缩——是什么、为什么、怎么做&#xff1f; 什么是打包、压缩&#xff1f; 打包&#xff1a;把文件合并。 压缩&#xff1a;通过一定算法减少体积。 为什么要进行打包、压缩&#xff1f; 打包&…

数据结构之堆(优先级队列)

“愿独立的你&#xff0c;在随心而行的途中&#xff0c;学会释怀而止&#xff0c;而非一时放纵之后而任性非为” 这好像是我第一次写关于数据结构的文章吧&#xff0c;关于数据结构&#xff0c;那真的是太奥秘了&#xff0c;想领略其中的奥秘&#xff0c;必须得付出相应的努力…

C++:类和对象OJ题

目录 一、求123...n 二、计算日期到天数的转换 三、日期差值 四、打印日期 一、求123...n 这里先把题目链接放在这里求123.....n 描述&#xff1a; 求123...n&#xff0c;要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句&#xff08;A?B:C…

UnLua实现继承

一、在蓝图中实现继承 1、创建父类&#xff0c;并绑定Lua脚本 2、创建子类蓝图&#xff0c;如果先创建的子类&#xff0c;可以修改父类继承 注意&#xff0c;提示选择继承父类的接口&#xff01; 二、在Lua中实现继承 1、在父类Lua脚本中实现函数 BP_CharacterBase.lua func…

一劳永逸:用脚本实现夸克网盘内容自动更新

系统环境&#xff1a;debian/ubuntu 、 安装了python3 原作者项目&#xff1a;https://github.com/Cp0204/quark-auto-save 感谢 缘起 我喜欢看电影追剧&#xff0c;会经常转存一些资源到夸克网盘&#xff0c;电影还好&#xff0c;如果是电视剧&#xff0c;麻烦就来了。 对于一…

【STL】 set 与 multiset:基础、操作与应用

在 C 标准库中&#xff0c;set 和 multiset 是两个非常常见的关联容器&#xff0c;主要用于存储和管理具有一定规则的数据集合。本文将详细讲解如何使用这两个容器&#xff0c;并结合实例代码&#xff0c;分析其操作和特性。 0.基础操作概览 0.1.构造&#xff1a; set<T&…

深度学习:神经网络--手写数字识别

目录 一、datasets 1.datasets简介 2.主要特点 二、MNIST 三、使用神经网络实现手写数字识别 1.创建数据加载器 2.判断是否使用GPU 3.创建神经网络 4.创建训练集模型 5.创建测试集模型 6.创建损失函数和优化器并训练 一、datasets 1.datasets简介 datasets是一个广…

[mysql]mysql排序和分页

#排序和分页本身是两块内容,因为都比较简单,我们就把它分到通一个内容里. #1排序: SELECT * FROM employees #我们会发现,我们没有做排序操作,但是最后出来的107条结果还是会按顺序发出,而且是每次都一样.这我们就有一个疑惑了,现在我们的数据库是根据什么来排序的,在我们没有进…

windows 驱动实例分析系列-COM驱动案例讲解

COM也被称之为串口,这是一种非常简单的通讯接口,这种结构简单的接口被广泛的应用在开发中,几乎所有系统都能支持这种通讯接口,它有RS232和RS485等分支,但一般我们都会使用RS232作为常见的串口,因为它足够简单和高效。 几乎所有的开发板,都会提供用于烧录、调试、日志的…

redis为什么不使用一致性hash

Redis节点间通信时&#xff0c;心跳包会携带节点的所有槽信息&#xff0c;它能以幂等方式来更新配置。如果采用 16384 个插槽&#xff0c;占空间 2KB (16384/8);如果采用 65536 个插槽&#xff0c;占空间 8KB (65536/8)。 今天我们聊个知识点为什么Redis使用哈希槽而不是一致性…

FastAPI 的隐藏宝石:自动生成 TypeScript 客户端

在现代 Web 开发中&#xff0c;前后端分离已成为标准做法。这种架构允许前端和后端独立开发和扩展&#xff0c;但同时也带来了如何高效交互的问题。FastAPI&#xff0c;作为一个新兴的 Python Web 框架&#xff0c;提供了一个优雅的解决方案&#xff1a;自动生成客户端代码。本…

引领长期投资新篇章:价值增长与财务安全的双重保障

随着全球金融市场的不断演变&#xff0c;长期投资策略因其稳健性和对价值增长的显著推动作用而日益受到投资者的重视。在这一背景下&#xff0c;Zeal Digital Shares&#xff08;ZDS&#xff09;项目以其创新的数字股票产品&#xff0c;为全球投资者提供了一个全新的长期投资平…

re题(38)BUUCTF-[FlareOn6]Overlong

BUUCTF在线评测 (buuoj.cn) 运行一下.exe文件 查壳是32位的文件&#xff0c;放到ida反汇编 对unk_402008前28位进行一个操作&#xff0c;我们看到运行.exe文件的窗口正好是28个字符&#xff0c;而unk_402008中不止28个数据&#xff0c;所以猜测MessageBoxA&#xff08;&#x…

cv中每个patch的关联

在计算机视觉任务中&#xff0c;当图像被划分为多个小块&#xff08;patches&#xff09;时&#xff0c;每个 patch 的关联性可以通过不同的方法来计算。具体取决于使用的模型和任务&#xff0c;以下是一些常见的计算 patch 关联性的方法&#xff1a; 1. Vision Transformer (…