PyTorch 池化层详解

在深度学习中,池化层(Pooling Layer)是卷积神经网络(CNN)中的关键组成部分。池化层的主要功能是对特征图进行降维和减少计算量,同时增强模型的鲁棒性。本文将详细介绍池化层的作用、种类、实现方法,并对比其与卷积层的异同,以及深入探讨全局池化的应用。

1. 池化层的作用

池化层的核心作用包括以下几个方面:

  1. 降维:通过池化操作,可以减少特征图的空间尺寸(高度和宽度),从而降低计算复杂度。
  2. 特征提取:池化层保留局部区域的显著特征,如边缘、纹理等。
  3. 抑制噪声:池化操作可以抑制输入特征图中的局部噪声,提高模型的鲁棒性。
  4. 防止过拟合:通过减少特征图的尺寸和参数数量,池化层有助于防止模型过拟合。
2. 池化层的类型

池化层主要包括最大池化(Max Pooling)和平均池化(Average Pooling),此外还有全局池化(Global Pooling)。

2.1 最大池化(Max Pooling)

最大池化选取池化窗口内的最大值作为输出。这种方法能够保留特征图中最显著的特征,通常用于提取边缘等强特征。

import torch
import torch.nn as nn# 创建一个二维最大池化层,池化窗口大小为2x2,步幅为2x2
maxpool2d = nn.MaxPool2d(kernel_size=2, stride=2)# 输入数据为 (batch_size, channels, height, width)
input_tensor = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)# 进行池化操作
output_tensor = maxpool2d(input_tensor)
print(output_tensor)

输出结果为:

tensor([[[[ 6.,  8.],[14., 16.]]]])
2.1.1 最大池化的详细计算过程

最大池化(Max Pooling)是一种常见的池化操作,用于对输入特征图进行降维和特征提取。其核心思想是通过池化窗口(也称为滤波器)在特征图上滑动,并在每个窗口内选取最大值作为该窗口的输出,从而形成一个新的、尺寸较小的特征图。

1. 池化窗口(Pooling Window)

池化窗口是一个固定大小的矩形区域,通常用kernel_size参数指定。例如,kernel_size=2表示一个2x2的池化窗口。池化窗口在特征图上滑动,滑动的步幅用stride参数指定。例如,stride=2表示池化窗口每次滑动2个单位。

2. 操作过程

假设我们有一个输入特征图,每个池化窗口覆盖特征图的一部分,最大池化的具体操作步骤如下:

  1. 选择窗口位置:将池化窗口放置在特征图的左上角,覆盖一个kernel_size大小的区域。
  2. 计算最大值:在这个窗口内,找出所有元素的最大值。
  3. 记录结果:将这个最大值记录到输出特征图的对应位置。
  4. 滑动窗口:按照stride参数指定的步幅,滑动池化窗口到新的位置,重复步骤2和步骤3,直到整个特征图都被池化窗口覆盖。
3. 示例

假设我们有一个4x4的特征图,池化窗口大小为2x2,步幅为2。具体操作如下:

输入特征图:

[[1, 3, 2, 4],[5, 6, 8, 7],[4, 2, 1, 0],[9, 7, 3, 2]]

池化过程:

  1. 第一个窗口覆盖位置(左上角2x2):
    [[1, 3],[5, 6]]
    
    最大值为6。
  2. 第二个窗口覆盖位置(右上角2x2):
    [[2, 4],[8, 7]]
    
    最大值为8。
  3. 第三个窗口覆盖位置(左下角2x2):
    [[4, 2],[9, 7]]
    
    最大值为9。
  4. 第四个窗口覆盖位置(右下角2x2):
    [[1, 0],[3, 2]]
    
    最大值为3。

输出特征图:

[[6, 8],[9, 3]]

请添加图片描述

4. 代码实现

以下是使用PyTorch实现上述最大池化操作的代码示例:

import torch
import torch.nn as nn# 定义一个2x2的最大池化层,步幅为2
maxpool2d = nn.MaxPool2d(kernel_size=2, stride=2)# 输入数据 (1, 1, 4, 4) 表示 (batch_size, channels, height, width)
input_tensor = torch.tensor([[[[1, 3, 2, 4],[5, 6, 8, 7],[4, 2, 1, 0],[9, 7, 3, 2]]]], dtype=torch.float32)# 进行池化操作
output_tensor = maxpool2d(input_tensor)
print(output_tensor)

输出结果为:

tensor([[[[6., 8.],[9., 3.]]]])
2.2 平均池化(Average Pooling)

平均池化计算池化窗口内的平均值作为输出。它能够平滑特征图,通常用于减少噪声。

import torch
import torch.nn as nn# 创建一个二维平均池化层,池化窗口大小为2x2,步幅为2x2
avgpool2d = nn.AvgPool2d(kernel_size=2, stride=2)# 输入数据为 (batch_size, channels, height, width)
input_tensor = torch.tensor([[[[1, 2, 3, 4],[5, 6, 7, 8],[9, 10, 11, 12],[13, 14, 15, 16]]]], dtype=torch.float32)# 进行池化操作
output_tensor = avgpool2d(input_tensor)
print(output_tensor)

输出结果为:

tensor([[[[ 3.5,  5.5],[11.5, 13.5]]]])
3. 全局池化(Global Pooling)

全局池化是一种特殊的池化操作,它将整个特征图缩小为一个单独的值。全局池化通常用于卷积神经网络的最后一个池化层,目的是将特征图的空间维度完全去除,从而得到一个固定大小的输出。这对于连接全连接层(Fully Connected Layer)或进行分类任务非常有用。

3.1 全局平均池化(Global Average Pooling)

全局平均池化计算整个特征图的平均值。

import torch
import torch.nn as nn# 定义一个全局平均池化层
global_avgpool = nn.AdaptiveAvgPool2d((1, 1))# 输入数据 (batch_size, channels, height, width)
input_tensor = torch.tensor([[[[1, 3, 2, 4],[5, 6, 8, 7],[4, 2, 1, 0],[9, 7, 3, 2]]]], dtype=torch.float32)# 进行全局平均池化操作
output_tensor = global_avgpool(input_tensor)
print("全局平均池化后的特征图:", output_tensor)

输出结果为:

全局平均池化后的特征图: tensor([[[[4.2500]]]])
3.2 全局最大池化(Global Max Pooling)

全局最大池化计算整个特征图的最大值。

import torch
import torch.nn as nn# 定义一个全局最大池化层
global_maxpool = nn.AdaptiveMaxPool2d((1, 1))# 输入数据 (batch_size, channels, height, width)
input_tensor = torch.tensor([[[[1, 3, 2, 4],[5, 6, 8, 7],[4, 2, 1, 0],[9, 7, 3, 2]]]], dtype=torch.float32)# 进行全局最大池化操作
output_tensor = global_maxpool(input_tensor)
print("全局最大池化后的特征图:", output_tensor)

输出结果为:

全局最大池化后的特征图: tensor([[[[9.]]]])
3.3 全局池化的应用

全局池化在深度学习模型中有许多应用,特别是在卷积神经网络(CNN)中。以下是一些常见的应用场景:

  1. 简化模型结构:全局池化可以将特征图的空间维度完全去除,从而简化模型结构。这使得模型在处理不同尺寸的输入时更加灵活。
  2. 减少参数:全局池化可以减少全连接层的参数数量,因为它将特征图缩小为一个固定大小的输出。这有助于降低模型的复杂度和过拟合风险。
  3. 提高模型的泛化能力:全局池化通过聚合整个特征图的信息,可以提高模型的泛化能力,使其在不同数据集上表现更好。
3.4 全局池化与传统池化的对比
特性传统池化(如 MaxPool2d, AvgPool2d)全局池化(Global Pooling)
池化窗口大小固定大小(如 2x2, 3x3)覆盖整个特征图
输出尺寸依据池化窗口大小和步幅固定为 1x1
主要用途局部特征提取和降维全局特征聚合和降维
计算复杂度较低较低
参数数量无参数无参数
4. 池化层和卷积层的对比

池化层和卷积层在使用滑动窗口和降维方面有相似之处,但它们的功能和作用不同。

相似之处
  1. 滑动窗口(Kernel):两者都使用固定大小的窗口在特征图上滑动。
  2. 降维:两者都可以通过设置适当的步幅(stride)来减少特征图的空间尺寸。
  3. 步幅(Stride):两者都可以设置步幅来控制滑动窗口的移动步长,从而影响输出特征图的大小。
不同之处
  1. 操作性质

    • 池化层:主要用于降维和特征选择,操作较为简单(如最大值或平均值计算)。池化层无参数更新,不涉及学习过程。
    • 卷积层:用于特征提取,通过卷积运算捕捉局部特征。卷积层包含可学习的参数(卷积核),这些参数通过反向传播进行更新。
  2. 输出特征图的内容

    • 池化层:输出的特征图是输入特征图的一种精简表示,保留了局部区域的显著特征(如最大值或平均值)。
    • 卷积层:输出的特征图是通过卷积核的加权求和得到的,能够捕捉到输入特征图的不同特征(如边缘、纹理等)。
  3. 学习能力

    • 池化层:无学习能力,不含可学习的参数。
    • 卷积层:具有学习能力,卷积核参数通过训练过程进行优化。
5. 计算输出特征图的大小

池化操作后输出特征图的大小可以通过以下公式计算。假设输入特征图的高度和宽度分别为 H in H_{\text{in}} Hin W in W_{\text{in}} Win,池化窗口的大小(即 kernel size)为 k h × k w k_h \times k_w kh×kw,步幅(stride)为 s h s_h sh s w s_w sw,填充(padding)为 p h p_h ph p w p_w pw

无填充情况下的输出大小计算

在无填充(padding = 0)的情况下,输出特征图的高度 H out H_{\text{out}} Hout 和宽度 W out W_{\text{out}} Wout 可以通过以下公式计算:

H out = ⌊ H in − k h s h ⌋ + 1 H_{\text{out}} = \left\lfloor \frac{H_{\text{in}} - k_h}{s_h} \right\rfloor + 1 Hout=shHinkh+1

W out = ⌊ W in − k w s w ⌋ + 1 W_{\text{out}} = \left\lfloor \frac{W_{\text{in}} - k_w}{s_w} \right\rfloor + 1 Wout=swWinkw+1

有填充情况下的输出大小计算

在有填充的情况下,填充的大小分别为 p h p_h ph p w p_w pw,输出特征图的高度 H out H_{\text{out}} Hout 和宽度 W out W_{\text{out}} Wout 可以通过以下公式计算:

H out = ⌊ H in + 2 p h − k h s h ⌋ + 1 H_{\text{out}} = \left\lfloor \frac{H_{\text{in}} + 2p_h - k_h}{s_h} \right\rfloor + 1 Hout=shHin+2phkh+1

W out = ⌊ W in + 2 p w − k w s w ⌋ + 1 W_{\text{out}} = \left\lfloor \frac{W_{\text{in}} + 2p_w - k_w}{s_w} \right\rfloor + 1 Wout=swWin+2pwkw+1

总结

池化层在深度学习中扮演着重要角色,通过降维、特征提取和抑制噪声等功能,显著提高了模型的计算效率和鲁棒性。最大池化和平均池化是最常见的池化操作,而全局池化作为一种特殊的池化方法,在简化模型结构和提高泛化能力方面表现突出。了解池化层的工作原理和应用,对于设计和优化高效的深度学习模型至关重要。

参考链接

PyTorch概述
Pytorch :张量(Tensor)详解
PyTorch 卷积层详解
PyTorch 全连接层(Fully Connected Layer)详解
PyTorch 池化层详解
PyTorch 激活函数及非线性变换详解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/431106.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++——多线程编程(从入门到放弃)

进程:运行中的程序 线程:进程中的进程 线程的最大数量取决于CPU的核心数 一、将两个函数添加到不同线程中 demo:两个函数test01()和test02(),实现将用户输入的参数进行打印输出1000次 将这两个函数均放到独立的线程t1和t2中&…

vue3+element-plus icons图标选择组件封装

一、最终效果 二、参数配置 1、代码示例 <t-select-icon v-model"selectVlaue" />2、配置参数&#xff08;Attributes&#xff09;继承 el-input Attributes 参数说明类型默认值v-model绑定值string-prefixIcon输入框前缀iconstringSearchisShowSearch是否显…

从角速度向量的角度理解姿态角速度和机体角速度的转换公式

一、什么是姿态角速度 这是我从《多旋翼飞行器设计和控制》上截取的关于欧拉角的定义。无人机的姿态角速度即偏航角、俯仰角、滚转角的一次导数&#xff0c;分别是、、。 二、什么是机体角速度 这是我在网上随便找的图&#xff0c;展示了机体坐标系。这个坐标系与飞机固定连接&…

【软件测试】详解测试中常用的几种测试方法

目录 一、集成测试二、 系统测试三、验收测试四、回归测试 总结 一、集成测试 术语 集成测试是继组件测试之后的又一个层次。集成测试假定交给这个层次的测试对象已经经过了组件测试&#xff0c;并且任何组件内部的缺陷都已经尽可能地被纠正。 集成 开发人员、测试人员和专…

6种常见位运算符+异或运算符的使用(加密、解密)

一、位运算符 位运算符进行的是整数与整数之间的运算 1、右移运算符&#xff1a;>> &#xff08;1&#xff09;相当于对整数除以2 &#xff08;2&#xff09;举例&#xff1a; int num 2; System.out.println(num >> 1); 2、左移运算符&#xff1a;<< …

定制智慧科技展厅方案:哪些细节是成功的秘诀?

随着数字科技浪潮的迅猛推进&#xff0c;智慧科技展厅跃升为科技成果展示与技术对话的前沿阵地。其策划与实施方案因而显得尤为关键。在此过程中&#xff0c;精雕细琢每一环节&#xff0c;确保创意与技术的无缝对接&#xff0c;成为不可或缺的要点。现在&#xff0c;让我们深入…

《程序猿之设计模式实战 · 适配器模式》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…

《深入解析:水果销售数据库操作与查询技巧》

文章目录 一、数据库结构与数据源插入1.1 创建数据库与表1.2 插入数据 二、基础数据查询2.1 查询客户信息2.2 查询供应商信息 三、查询优化与技巧3.1 使用LIMIT子句 四、高级查询技巧4.1 使用聚合函数4.2 连接查询4.3 使用子查询 五、案例分析5.1 客户订单详情查询 一、数据库结…

MySQL篇(窗口函数/公用表达式(CTE))(持续更新迭代)

目录 讲解一&#xff1a;窗口函数 一、简介 二、常见操作 1. sumgroup by常规的聚合函数操作 2. sum窗口函数的聚合操作 三、基本语法 1. Function(arg1,..., argn) 1.1. 聚合函数 sum函数&#xff1a;求和 min函数 &#xff1a;最小值 1.2. 排序函数 1.3. 跨行函数…

DeiT(ICML2021):Data-efficient image Transformer,基于新型蒸馏且数据高效的ViT!

Training data-efficient image transformers & distillation through attention&#xff1a;通过注意力训练数据高效的图像转换器和蒸馏 论文地址&#xff1a; https://arxiv.org/abs/2012.12877 代码地址&#xff1a; https://github.com/facebookresearch/deit 这篇论文…

14.第二阶段x86游戏实战2-C++语言开发环境搭建-VisualStudio2017

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 本次游戏没法给 内容参考于&#xff1a;微尘网络安全 本人写的内容纯属胡编乱造&#xff0c;全都是合成造假&#xff0c;仅仅只是为了娱乐&#xff0c;请不要…

vue-入门速通

setup是最早的生命周期&#xff0c;在vue2里边的data域可以使用this调用setup里面的数据&#xff0c;但是在setup里边不能使用thisvue项目的可执行文件是index&#xff0c;另外运行前端需要npm run vue的三个模块内需要三个不同的结构&#xff0c;里边放置js代码&#xff0c;注…

2024/9/21 leetcode 21.合并两个有序链表 2.两数相加

目录 21.合并两个有序链表 题目描述 题目链接 解题思路与代码 2.两数相加 题目描述 题目链接 解题思路与代码 --------------------------------------------------------------------------- 21.合并两个有序链表 题目描述 将两个升序链表合并为一个新的 升序 链表并返…

CVPT: Cross-Attention help Visual Prompt Tuning adapt visual task

论文汇总 当前的问题 图1:在VTAB-1k基准测试上&#xff0c;使用预训练的ViT-B/16模型&#xff0c;VPT和我们的CVPT之间的性能和Flops比较。我们将提示的数量分别设置为1、10、20、50,100,150,200。 如图1所示&#xff0c;当给出大量提示时&#xff0c;VPT显示了性能的显著下降…

【MySQL 04】数据类型

目录 1.数据类型分类 2.数值类型 2.1 tinyint 类型 2.2 bit类型 2.3 float类型 2.4decimal 3.字符串类型 3.1 char类型 3.2 varchar类型 4.日期和时间类型 6. enum和set类型 6.1.enum和set类型简介&#xff1a; 6.2.enum和set的一般使用方法 6.3.用数字的方式…

如何用AI实现自动更新文章?(全自动更新网站)

AI的诞生确实给我们的生活和工作都带来了很大的改变&#xff0c;从我自身来讲&#xff0c;也渐渐习惯了遇到事情先问问AI&#xff0c;不管是翻译、专业性问题、PPT制作、总结写作这些&#xff0c;确实帮我迅速理清了思路&#xff0c;也可以有很多内容的借鉴。 作为一个业余爱好…

kismet和war driving具体准备(仅供无线安全学习)

war driving准备 一台笔记本 一个最好是双频的网卡&#xff0c;单频搜集信号少 我自己买的是http://e.tb.cn/h.grI4EmkDLOqQXHG?tkKZ5g3RVeH6f 如果经济条件允许可以去买大功率天线&#xff08;我买的车载的 大概40db这样子 范围广&#xff09; http://e.tb.cn/h.grCM0CQ6L…

Davinci 大数据可视化分析

Davinci 大数据可视化分析 一、Davinci 架构设计1.1 Davinci定义1.2 Davinci 应用场景 二、Davinci 安装部署2.1 部署规划2.2 前置环境准备2.3 Davinci部署2.3.1 物料准备2.3.2 安装配置 2.4 环境变量配置2.5 初始化数据库2.5.1 创建数据库及用户 2.5.2 建表2.6 初始化配置 三、…

7天速成前端 ------学习日志 (继苍穹外卖之后)

前端速成计划总结&#xff1a; 全26h课程&#xff0c;包含html&#xff0c;css&#xff0c;js&#xff0c;vue3&#xff0c;预计7天内学完。 起始日期&#xff1a;9.16 预计截止&#xff1a;9.22 每日更新&#xff0c;学完为止。 学前计划 课…

使用IDA Pro动态调试Android APP

版权归作者所有&#xff0c;如有转发&#xff0c;请注明文章出处&#xff1a;https://cyrus-studio.github.io/blog/ 关于 android_server android_server 是 IDA Pro 在 Android 设备上运行的一个调试服务器。 通过在 Android 设备上运行android_server&#xff0c;IDA Pro …