【AI大模型】股票价格预测精度增强,基于变分模态分解、PatchTST和自适应尺度加权层

简介

股票价格指数是金融市场和经济健康的晴雨表,准确预测对投资决策至关重要。股票市场的高频交易和复杂行为使得预测具有挑战性,需开发稳定、准确的预测模型。研究表明,估值比率、数据驱动模型(如支持向量机)、股票价格比率和回报分散等因素均能增强股票价格的可预测性。

目前的股票价格预测方法可以分为两种:

  • **多变量预测:**利用宏观经济、政策、技术指标及历史股价等多种因素,适合长期趋势预测,但短期预测中变量过多可能引入噪声,影响模型性能。

  • **单变量预测:**仅使用历史股价数据,假设所有因素的影响已反映在价格变化中,更适合短期预测,且适合数据驱动模型提取高维特征。

本文聚焦于单一股票指数的价格预测。

股票价格预测分为传统统计方法和数据驱动方法。传统方法(如ARIMA、ARCH)对非平稳数据预测不可靠。数据驱动方法(如机器学习、深度学习)在处理非线性和高维数据上表现优越。机器学习方法如支持向量机(SVM)和决策树优于传统方法。深度学习模型(CNN、RNN、注意力机制)在金融预测中日益重要。Transformer模型通过自注意力机制捕捉长程依赖和复杂时间模式。PatchTST模型通过分段时间序列数据提高长期预测性能,适合股票价格预测。本研究采用PatchTST作为预测模型。

尽管Transformer模型在时间序列预测中表现出色,但直接从单一模型获得满意的预测准确性仍具挑战性。本文提出了结合机器学习/深度学习与分解-集成技术的复合预测框架,通过将时间序列数据分解为多个独立子序列进行预测。使用独立成分分析(ICA)、小波分解、经验模态分解(EMD)等方法进行时间序列分解,最近变分模态分解(VMD)显示出优越的分解和特征表示能力。

本文提出的VMD+PatchTST与自适应尺度加权层(ASWL)框架,通过VMD分解、PatchTST学习时间模式和ASWL优化资源分配,显著提高了股票价格预测的准确性。VMD+PatchTST与ASWL框架在多个股票指数数据集上表现优越,实验结果显示其在模型评估指标上超越其他方法。ASWL创新性地引入了自适应尺度加权,优化了多变量时间序列预测中的资源分配,显著降低了预测误差。

VMD+PatchTST与ASWL复合预测框架在SP500、DJI、SSEC和FTSE数据集上表现优异。MSE值分别为7.69、51.67、13.29和19.91;sMAPE值分别为0.42%、0.24%、0.46%和0.29%。本框架在预测准确性和泛化能力上优于以往模型。

方法

本文提出的框架包含三个部分:VMD分解模块、PatchTST预测模型和自适应尺度加权层。原始序列通过VMD模块分解为多个子序列。预测模型在训练数据集上学习,自适应尺度加权层负责训练过程中的损失修正。预测模型处理测试数据集,生成预测子序列,最终在集成模块中汇总得到最终预测序列。

变分模态分解

变分模态分解(VMD)是一种新颖的时频分析方法,能将多成分时间序列分解为多个单成分的幅度调制(AM)和频率调制(FM)信号。VMD克服了传统经验模态分解(EMD)中的端点效应和伪成分问题,且在复杂的非线性和非平稳时间序列中表现出更强的鲁棒性。VMD通过变分优化过程将原始时间序列S(t)分解为K个带宽受限的内在模态函数s_m(t)及其对应的中心频率v_m(t)。

带宽约束通过L2范数梯度的解调信号估计来估算。

引入二次惩罚项α和拉格朗日乘子λ,将重构约束问题转化为无约束问题。

采用交替方向乘子法(ADMM)求解,迭代应用相关方程直至满足终止条件,最终输出VMD算法的结果。

预测模型

Transformer模型在时间序列建模中的应用:Transformer基于注意力机制,适用于非线性和非平稳的金融数据预测,旨在实现风险分散和超额收益。

PatchTST模型的优势:

  • **Patching模块:**处理不同时间步的tokens,将其聚合为子序列,捕捉局部和全局语义信息。

  • **通道独立性:**每个输入token包含单一时间序列的信息,强调特征的重要性,减少过拟合。

  • **模型架构:**PatchTST包含四个主要组件:前向过程、Patching、Transformer编码器和实例归一化。

  • **前向过程:**将多变量时间序列分解为多个单变量时间序列,输入到通道独立的Transformer中进行预测。

  • **Patching模块:**将单变量时间序列分割为多个patches,保持信息完整性。

  • **Transformer编码器:**使用标准Transformer编码器提取输入信号的潜在表示,通过可学习的线性投影和位置编码保持时间顺序一致性。

自适应尺度加权层

VMD将时间序列S(t)分解为多个IMFs X1:L,每个IMF包含多尺度特征。预测模型从每个IMF学习,生成预测输出x ˆ L+1:L+T,最终预测通过求和得到x ˆ。数据归一化至0-1范围,导致缺乏尺度信息。多变量时间序列的总损失函数简单相加,忽视IMFs的频率和尺度差异。

引入自适应尺度加权层(ASWL),动态调整各子序列的权重,增强模型预测能力。ASWL通过线性层整合多尺度信息,赋予高低频成分不同的损失权重。最终预测结果通过元素乘法替代简单加法。

实验设置

数据

使用全球股指的日收盘价验证方法,数据来源于Wind数据库。选取四个股指:SP500、DJI、SSEC、FTSE,时间范围为2000年1月至2024年6月。每个股指的有效观察数分别为:6,123、6,145、5,920、5,893。数据集分为五个部分,每部分80%用于训练,20%用于测试。SP500指数的VMD分解显示,早期IMFs范围大,反映低频特征;后期IMFs范围小,反映高频特征。

**评估指标
**

使用均方误差(MSE)和对称平均绝对百分比误差(sMAPE)评估模型预测结果。

基线和模型参数

为了评估预测模型性能,选择CNN-LSTM、Informer、Autoformer、非平稳Transformer、Prophet、ARIMA作为基线。直接比较这些时间序列预测模型的表现。将变分模态分解(VMD)与深度预测模型结合,预测四个股票价格数据集,展示性能提升。

引入ASWL,比较各模型性能。

结果和分析

单模型预测表现

PatchTST在四个股票指数价格预测中,MSE和sMAPE表现优异,仅次于Non-stationary Transformer。SP500数据集sMAPE值:Informer 12.68%,Autoformer 3.68%,Non-stationary Transformer 1.12%,PatchTST 1.38%,CNN-LSTM 5.69%,Prophet 8.9%,ARIMA 40.38%。ARIMA因无法有效处理非平稳和非线性时间序列而被排除后续实验。CNN-LSTM虽表现不如Autoformer和Non-stationary Transformer,但仍可选。Transformer模型普遍具有强预测能力,De-stationary Attention和PatchTST的分块方法是其关键因素。直接建模序列仍面临准确性挑战。

VMD增强深度模型的性能

VMD增强的深度模型中,VMD+PatchTST在四个股票指数数据集上表现最佳,MSE和sMAPE显著低于单一预测模型,尤其在DJI数据集上表现突出。VMD有效地将复杂时间序列分解为不同频率的子序列,提升模型学习效果。VMD+CNN-LSTM和VMD+Autoformer表现相近,但不及VMD+PatchTST,后者在捕捉数据模式上更为有效。在IMF分解分析中,VMD+PatchTST在高频成分(IMF9)预测中表现优异,而VMD+Informer在低频成分(IMF0)上表现良好,但在高频成分上效果不佳。VMD+CNN-LSTM在低频成分预测中表现不佳,显示出捕捉长期趋势的不足。结果强调了模型选择和频率分解技术(如VMD)在非平稳金融时间序列预测中的重要性。

使用VMD、ASWL和深度模型增强预测

IMFs表示股票指数的低频到高频分解序列,其规模逐渐减小,影响MSE和sMAPE值。引入ASWL模块以在模型训练中纳入IMFs的原始规模信息。VMD+PatchTST与ASWL在四个股票指数数据集上表现优异,MSE分别减少42.28%、23.63%、25.60%和13.89%。VMD+PatchTST与ASWL在所有数据集中MSE和sMAPE最低,优于VMD+Informer和VMD+Autoformer。VMD+Non-stationary Transformer与ASWL表现良好,但不及VMD+PatchTST。

VMD+深度模型结合ASWL框架在IMFs分析中表现出色,尤其在低频IMFs(IMF0-2)上,MSE和sMAPE显著降低。在DJI数据集中,VMD+PatchTST与ASWL的MSE分别减少38.26%、35.55%和14.20%。ASWL有效捕捉IMF的尺度信息,数据规模增加时,预测性能提升更明显。VMD+PatchTST在高频IMFs预测中也表现优异,FTSE数据集IMF9的MSE为1.3338,sMAPE为40.62%。

VMD+PatchTST与ASWL模型在SP500数据集的预测表现良好,特别是在IMFs 1-3中准确性突出。IMFs 1-3捕捉了主要的中频成分,有助于准确预测股票价格的主要趋势。ASWL的引入改善了高频IMFs(如IMF9)的预测性能,减少了预测波动和误差。ASWL通过自适应加权机制优化了不同频率成分对最终预测的影响,提高了短期波动和噪声的处理能力。

预测结果总结

股票价格序列的非平稳性和复杂性使得单一模型难以准确预测。PatchTST模型通过其拼接机制在股票指数价格预测中表现优越。VMD与深度模型结合显著降低股票指数价格预测误差,VMD+PatchTST效果最佳。ASWL模块通过引入尺度信息进一步提升预测性能,减少低频子序列的误差并降低高频子序列的波动。

总结

本文提出了一种新颖的股票指数价格预测框架,结合变分模态分解(VMD)、PatchTST和自适应尺度加权层(ASWL)。首先使用VMD将原始价格序列分解为多个具有可管理特征的IMF。对每个IMF应用PatchTST以有效捕捉和建模时间模式。ASWL模块用于整合尺度信息,提升预测性能。最终预测通过聚合所有IMF的结果获得。方法的新颖性在于VMD与PatchTST和ASWL的结合,充分利用了分解、时间模式建模和自适应加权的优势。

实验和比较分析验证了VMD-PatchTST-ASWL框架的有效性和效率。

未来工作将扩展到其他多变量时间序列预测任务,如能源价格预测、负荷预测和风速预测,以验证模型的多样性和鲁棒性。

2024最新全套大模型学习资料:大模型学习成长路线、书籍&学习文档、视频教程、项目实战、面试题汇总等,免费分享~

有需要的同学可以通过【微信扫描下方二维码】,即可免费领取!!!

一、大模型学习成长路线

学习新技能,方向至关重要。 正确的学习路线图可以为你节省时间,少走弯路;方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

二、大模型书籍&学习文档

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)

在这里插入图片描述

在这里插入图片描述

三、大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

四、大模型实战项目

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

五、大模型面试题汇总

面试,不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

上述的资料已经全部打包好,有需要这份全套的大模型学习资料的同学,可以通过【微信扫描下方二维码】,免费领取!!!

机会总是留给有准备的人。 如果你需要学习大模型,那么请不要犹豫,立刻行动起来!早掌握,早享受。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/431676.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android平台使用VIA创建语音交互应用

Android平台使用VIA创建语音交互应用 概述 在 Android 平台上开发一款语音助手应用需要整合多种技术,包括语音识别(ASR)、文字转语音(TTS)、以及热词检测(Hotword Detection)。这些技术共同构成了语音助手应用的核心交互方式,使用户能够通过语音命令与设备进行无缝交…

RabbitMQ 快速入门

目录 什么是MQ 为什么要使用 MQ MQ 的分类 MQ 的选择 认识 RabbitMQ RabbitMQ 的核心部分 安装 脚本安装 docker 安装 启动 web 管理界面 创建用户 创建消息队列 基本概念 消息应答 持久化 预取值 发布确认 交换机 Exchange 概念 死信队列 死信的来源 延迟…

C++之 string(中)

C之 string string类对象的容量操作 resize 将有效字符的个数该成n个,多出的空间用字符c填充 虽然在string里用的不多,但是在vector里面常见 这里有三种情况: 1)resize小于当前的size 2)resize大于当前的size,小于capacity …

重生之我在代码随想录刷算法第十三天 | 110.平衡二叉树、257. 二叉树的所有路径、404.左叶子之和、222.完全二叉树的节点个数

参考文献链接:代码随想录 本人代码是Java版本的,如有别的版本需要请上代码随想录网站查看。 110.平衡二叉树 力扣题目链接 解题思路 这道题目刚看到以为和二叉树的最大深度差不多,上来写了一堆迭代求深度的代码结果发现不对劲。 看了题…

通过WinCC在ARMxy边缘计算网关上实现智能运维

随着信息技术与工业生产的深度融合,智能化运维成为提升企业竞争力的关键因素之一。ARMxy系列的ARM嵌入式计算机BL340系列凭借其高性能、高灵活性和广泛的适用性,为实现工业现场的智能运维提供了坚实的硬件基础。 1. 概述 ARMxy BL340系列是专为工业应用…

wpf在图上画矩形,矩形可拖动、大小可调节,使用装饰器Adorner调整矩形大小,限制拖动和调节范围

效果 功能 使用wpf实现 在图片上画一个矩形框该矩形框可以调节大小该矩形框可以拖动调整位置 注:这里的鼠标事件是,双击在图上画一个固定大小的矩形框,右键按住拖动矩形框。有需要的可以自行调整对应的鼠标事件 参考资料:https…

vant van-pull-refresh + van-list实现list列表支持搜索和下拉刷新

1 介绍 在使用 van-pull-refresh van-list实现list列表下拉刷新时遇到几个问题在这里进行一个总结。 2 出现的问题 问题一:当van-pull-refresh van-list组合使用时,下拉刷新会调用两个加载图标。 解答:去除van-pull-refresh加载图标&…

刷题小记3----每日一题精进Java技能(详细思路解析✅)

文章目录 一、两种排序方法二、最小公倍数三、另类加法四、倒置字符串五、统计回文 一、两种排序方法 题目链接:两种排序方法 题目描述: 考拉有n个字符串字符串,任意两个字符串长度都是不同的。考拉最近学习到有两种字符串的排序方法&#x…

Web端云剪辑解决方案,提供前端产品源码

美摄科技作为业界领先的视频技术服务商,匠心打造Web端云剪辑解决方案,以前沿技术赋能企业用户,开启视频创作与编辑的新纪元。 【云端赋能,重塑剪辑体验】 美摄科技的Web端云剪辑解决方案,颠覆了传统视频编辑的局限&a…

zabbix“专家坐诊”第257期问答

问题一 Q:zabbix5.0监控项里的键值,怎么设置变量值?{#ABC} {$ABC} 都识别不到变量。 A:可以参考一下这个。 问题二 Q:我想问一下用odbc创建监控项,生成了json格式,如何创建一个触发器去判断里面…

人工智能武器化与国家网络威慑机制选择

文章目录 前言一、人工智能武器化与国家网络威慑机制选择1、人工智能时代国家推动网络威慑的逻辑二、迈向攻防平衡期的网络威慑机制选择三、攻防平衡状态下的网络威慑机制选择前言 威慑理论是国家应对战争威胁的重要思想,同时也是一种严格的信号传递机制。自21世纪初期“网络…

方法部分 学习

方法是程序中最小的执行单元 方法的定义调用 public static void 方法名(){ 方法体 } 写在main方法外面,在main函数里面直接调用带参数:public static void 方法名(int num1 , int num2&am…

成都睿明智科技有限公司电商服务引领品牌跃升

在当今这个数字化浪潮汹涌的时代,抖音电商以其独特的魅力迅速崛起,成为众多品牌商家竞相追逐的新战场。在这片充满机遇与挑战的领域中,成都睿明智科技有限公司以其专业的抖音电商服务,成为了众多商家信赖的伙伴。今天,…

在虚幻引擎中创建毛发/头发

在虚幻引擎中创建毛发/头发 , 首先开启两个插件 Groom 和 Alembic Groom Importer 打开蒙皮缓存 导出人物模型 将人物导入Blender , 选择需要种植头发的点 指定并选择 点击毛发 这里变成爆炸头了 , 把数量和长度调一下 切换到梳子模式 调整发型 导出为abc , 文件路径不…

针对 Linux SSH 服务器的新攻击:Supershell 恶意软件危害易受攻击的系统

ASEC 研究人员发现了针对保护不善的 Linux SSH 服务器的新攻击。 在其中,黑客使用了用Go编写的 Supershell恶意软件。 该后门使攻击者能够远程控制受感染的系统。 初次感染后,黑客启动扫描仪来寻找其他易受攻击的目标。 据信这些攻击是使用从已受感…

kubernetes K8S 挂载分布式存储 ceph

目录 一、Ceph简介 二、Ceph核心组件介绍 三、安装Ceph集群 1初始化实验环境 1.1、配置静态IP: 1.2、配置主机名: 1.3、配置hosts文件: 1.4、配置互信 1.5、关闭防火墙 1.6、关闭selinux 1.7、配置Ceph安装源 1.8、配置时间同步 …

【自学笔记】支持向量机(4)——支持向量回归SVR

引入 SVM解决了分类问题,而用类似方法解决回归问题的模型称为支持向量回归。目标是得到一个模型,使输出的 f ( x ⃗ ) f(\vec{x}) f(x )与 y y y尽可能接近。 传统的回归模型直接计算 f ( x ⃗ ) f(\vec{x}) f(x )与 y y y的差距作为损失,当两…

Linux驱动开发(速记版)--驱动基础

第一章 初识内核源码 Linux系统源码提供了操作系统的核心功能,如进程管理、内存管理、文件系统等。 BusyBox这类的文件系统构建工具,则提供了在这些核心功能之上运行的一系列实用工具和命令,使得用户能够执行常见的文件操作、文本处理、网络配…

爬虫逆向学习(八):Canvas画图滑块验证码解决思路与绕过骚操作

此分享只用于学习用途,不作商业用途,若有冒犯,请联系处理 逆向站点 aHR0cHM6Ly93d3cuYm9odWF5aWNhaS5jbi8/VTU4Iy9jaGVtaWNhbC9sb2dpbj9yZWRpcmVjdD0lMkZjaGVtaWNhbA 滑块验证码样式 滑块验证码研究 一般的滑块验证码都是会直接提供滑块和…

Diffusion Model Stable Diffusion(笔记)

参考资料: 文章目录 DDPM架构模型如何拥有产生逼真图片的能力Denoise模型功能Denoise模型如何训练考虑进文字 文生图流程(Stable Diffusion) DDPM架构 模型如何拥有产生逼真图片的能力 Denoise模型功能 通过Denoise将一个噪音图一步步生成为目标图像 Denoise实际…