《线性代数》学渣笔记

文章目录

  • 1 行列式
  • 2 矩阵
  • 3 齐次线性方程组
  • 4 非齐次线性方程组
  • 5 公共解问题
  • 6 同解问题
  • 7 抽象型方程组
    • 7.1 矩阵A各行元素之和均为0
    • 7.2 方程组解的个数与秩的关系
    • 7.3 选择题常考
    • 7.4 证线性无关
    • 7.5 证线性相关
    • 7.6 线性方程组的几何意义
    • 7.7 线性表出
  • 8 向量空间
    • 8.1 向量空间中的坐标
    • 8.2 过渡矩阵
    • 8.3 坐标变换
  • 9 特征值特征向量
    • 9.1 施密特正交化
    • 9.2 用特征值和特征向量求A
  • 10 相似
    • 10.1 相似的五个性质
    • 10.2 相似的结论
    • 10.3 相似对角化
  • 11 实对称矩阵(必能相似对角化)
  • 12 正交矩阵
  • 13 二次型
    • 13.1 惯性定理
    • 13.2 配方法
    • 13.3 正交变换法
      • 13.3.1 常规计算
      • 13.3.2 反求参数,A或(f)
      • 13.3.3 最值问题
      • 13.3.4 几何应用
  • 14 合同
    • 14.1 实对称矩阵的合同
  • 15 正定二次型(正定矩阵)
  • 16 反对称矩阵

1 行列式

1.1 克拉默法则

在这里插入图片描述

1.2 基本性质

  1. 交换性质
    行列式的行列互换,行列式的值不变。

  2. 对角矩阵的行列式
    对于对角矩阵(或更一般的上三角矩阵或下三角矩阵),行列式等于对角线上元素的乘积。 ∣ a 11 0 ⋯ 0 0 a 22 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a n n ∣ = a 11 a 22 ⋯ a n n \begin{vmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix}= a_{11} a_{22} \cdots a_{nn} a11000a22000ann =a11a22ann

  3. 矩阵乘积的行列式
    两个矩阵相乘的行列式等于它们行列式的乘积。

    det ⁡ ( A B ) = det ⁡ ( A ) det ⁡ ( B ) \det(AB) = \det(A) \det(B) det(AB)=det(A)det(B)

  4. 行列互换的行列式
    交换矩阵的两行(或两列),行列式取相反数。

    det ⁡ ( A ) = − det ⁡ ( B ) \det(A) = -\det(B) det(A)=det(B)

  5. 相同行(或列)的行列式
    如果矩阵的两行(或两列)相同,则该行列式为零。

  6. 比例行(或列)的行列式
    如果矩阵的两行(或两列)成比例,则该行列式为零。

  7. 加法性质
    如果矩阵的某一行(或某一列)是两行(或两列)的和,则行列式等于这两行(或两列)分别替换的行列式之和。

  8. 行列式的行数与列数
    行列式仅对方阵(行数等于列数的矩阵)定义。

  9. 行列式与矩阵的转置
    矩阵的行列式等于其转置矩阵的行列式。

    det ⁡ ( A ) = det ⁡ ( A T ) \det(A) = \det(A^T) det(A)=det(AT)

  10. 单位矩阵的行列式
    单位矩阵的行列式为1。

    det ⁡ ( E ) = 1 \det(E) = 1 det(E)=1

  11. 矩阵的行(或列)倍加法不变性
    对矩阵的某一行(或列)进行倍加(即将该行(或列)加上另一行(或列)的某个倍数)操作,行列式不变。

  12. 矩阵的数乘
    如果将矩阵的某一行(或某一列)乘以一个数 c c c,那么行列式等于原行列式乘以 c c c

    det ⁡ ( c A ) = c n det ⁡ ( A ) \det(cA) = c^n \det(A) det(cA)=cndet(A)

1.3 余子式 M i j M_{ij} Mij

余子式是从一个 n × n n \times n n×n矩阵中,删除某一行和某一列后得到的 ( n − 1 ) × ( n − 1 ) (n-1) \times (n-1) (n1)×(n1)矩阵的行列式。

定义
对于一个矩阵 A A A的元素 a i j a_{ij} aij,其对应的余子式 M i j M_{ij} Mij是指从矩阵 A A A中删除第 i i i行和第 j j j列后得到的子矩阵的行列式。

1.4 代数余子式 A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij

代数余子式是余子式的带符号版本,用于行列式的展开。具体来说,代数余子式 A i j A_{ij} Aij定义为:

A i j = ( − 1 ) i + j ⋅ M i j A_{ij} = (-1)^{i+j} \cdot M_{ij} Aij=(1)i+jMij
∣ A ∣ = ∑ j = 1 n a i j A i j = ∑ i = 1 n a i j A i j |A|=\sum_{j=1}^na_{ij}A_{ij}=\sum_{i=1}^na_{ij}A_{ij} A=j=1naijAij=i=1naijAij

注意:代数余子式 A i j A_{ij} Aij就是伴随矩阵 A ∗ A^* A的矩阵系数
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋱ ⋮ A 1 n A 2 n ⋯ A n n ) T A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}^T A= A11A12A1nA21A22A2nAn1An2Ann T

在这里插入图片描述
在这里插入图片描述

1.5 具体型行列式计算(化为基本型)

1.5.1 主对角线行列式:主对角元素相乘

1.5.2 副对角线行列式:副对角元素相乘并判断正负号

在这里插入图片描述
在这里插入图片描述

1.5.3 拉普拉斯展开式

在这里插入图片描述

1.5.4 范德蒙德行列式:只看第二行,右减左,全都减,减完乘起来

在这里插入图片描述

1.5.5 加边法:没有明显的公共规律,自己补一个公共规律

在这里插入图片描述

1.5.6 递推法(适用于计算异爪型行列式):高阶→低阶

建立两阶或三阶之间的关系,且每阶的元素分布规律必须相同

1.5.7 数学归纳法(适用于证明题):低阶→高阶

  • 第一数学归纳法(验证1个):验证 n = 1 n=1 n=1时成立,再假设 n = k ( k ≥ 2 ) n=k(k≥2) n=kk2时成立,最后证明 n = k + 1 n=k+1 n=k+1时成立,由此推出对任意 n n n成立
  • 第二数学归纳法(验证2个):验证 n = 1 , n = 2 n=1,n=2 n=1n=2时成立,再假设 n < k n<k n<k时成立,最后证明 n = k n=k n=k时成立,由此推出对任意 n n n成立

用数学归纳法证爪型行列式通式:

  1. n = 1 n=1 n=1
  2. n = 2 n=2 n=2
  3. 假设 n < k n<k n<k时成立
  4. n = k n=k n=k时,按第一列展开得通式形式
  5. 得证

1.5.8 一些处理手段

在这里插入图片描述

1.6 抽象型行列式的计算: a i j a_{ij} aij未给出

1.6.1 用行列式性质

1.6.2 用矩阵知识

在这里插入图片描述

1.6.3 用相似理论

在这里插入图片描述

2 矩阵

2.1 转置、逆、伴随的一些关系式

在这里插入图片描述
在这里插入图片描述

2.2 求 A n A^n An

2.2.1 A为方阵,且r(A)=1

在这里插入图片描述

2.2.2 试算 A 2 A^2 A2(或 A 3 A^3 A3),找规律【归纳法→探索、研究精神!】

在这里插入图片描述

2.2.3 A=B+C用二项展开式

在这里插入图片描述

2.2.4 用相似理论

在这里插入图片描述

2.3 矩阵的伴随

在这里插入图片描述
在这里插入图片描述

求法

简单一点求矩阵的伴随,进而用伴随来求矩阵的逆

在这里插入图片描述

在这里插入图片描述

2.4 矩阵的逆

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.5 矩阵的转置

在这里插入图片描述

2.6 初等矩阵(左行右列)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.7 分块矩阵

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.8 矩阵方程(含未知矩阵X)

在这里插入图片描述

2.9 矩阵方程求解

在这里插入图片描述

2.10 秩

矩阵的秩是其行秩和列秩的值,而行秩与列秩总是相等的。秩决定了矩阵的行向量或列向量的线性独立性,也影响了线性方程组的解的情况(如是否有解以及解的数量)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在两个向量组中,被表示的向量组的秩不大于表示它的向量组的秩。(即:两向量组中,被表示的向量组的秩不大)

2.11 行向量组等价(两方程组同解问题)

两个行向量组 等价,当且仅当它们能通过一系列初等行变换相互转换。

具体解释

  • 如果矩阵 A A A 和矩阵 B B B 的行向量组等价,这意味着可以通过对 A A A 进行有限次初等行变换,得到 B B B。反之亦然。换句话说, A A A B B B 具有相同的行空间,它们的行向量可以通过相同的线性组合生成。

2.12 维数与向量的关系

  1. 维数

    • 维数 指的是向量中元素的个数。在矩阵中,维数通常指的是向量所在空间的维度。例如,一个在 R m \mathbb{R}^m Rm 空间中的向量有 m m m 个元素。
    • 对于一个线性方程组来说,维数 指的是系数矩阵的行数,也是方程的个数。
  2. 向量个数

    • 向量个数 指的是列向量的个数,通常是系数矩阵的列数,也代表方程中未知数的个数。
  3. 线性相关性

    • 如果矩阵的列数大于行数(向量个数 > 维数),则这些列向量必定线性相关。

假设有一个矩阵 A A A 3 × 4 3 \times 4 3×4 矩阵( 3 3 3 行, 4 4 4 列):

  • 向量的维数是 3 3 3,因为每个列向量有 3 3 3 个元素。
  • 向量的个数是 4 4 4,因为矩阵有 4 4 4 列。
  • 因为 4 > 3 4 > 3 4>3,根据线性代数定理, A A A 的列向量必定是线性相关的。

3 齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4 非齐次线性方程组

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5 公共解问题

在这里插入图片描述

6 同解问题

  • 行向量组等价是两个方程组同解的充要条件。如果两个线性方程组的增广矩阵的行向量组是等价的(即通过初等行变换可以互相转换),那么这两个方程组一定有相同的解集。这是因为初等行变换不会改变线性方程组的解。
  • 如果矩阵 A A A B B B 行等价,则存在一个可逆矩阵 P P P 使得 P A = B PA = B PA=B 。这表明可以通过对 A A A 进行初等行变换得到 B B B,而这些初等行变换可以表示为一个可逆矩阵 P P P 作用在 A A A 上。
  • 一个行向量代表一个方程,行向量组的一次初等行变换相当于对方程组做了一次同解变形。由于初等行变换不会改变线性方程组的解集,所以两个增广矩阵行向量组等价,意味着它们对应的方程组有相同的解。
  • 列向量的关系则与方程组是否有解密切相关。
  • 若两个方程组互为线性组合,则两个方程组等价。等价的两个方程组一定同解,但同解的两个方程组不一定等价。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 抽象型方程组

7.1 矩阵A各行元素之和均为0

在这里插入图片描述

7.2 方程组解的个数与秩的关系

在这里插入图片描述

7.3 选择题常考

在这里插入图片描述

7.4 证线性无关

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7.5 证线性相关

在这里插入图片描述

要证线性相关,那么只需要证得有一个系数不为0就能使等式成立即可。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

7.6 线性方程组的几何意义

在这里插入图片描述

在这里插入图片描述
有解情况 \mathbf{有解情况} 有解情况

几何意义代数表达
三平面相交于一点(唯一解) r ( A ) = r ( A ‾ ) = 3 r(A)=r(\overline{A})=3 r(A)=r(A)=3法向量两两正交
三平面相交于一条线 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两面都不重合)
两平面重合,第三平面与之相交 r ( A ) = r ( A ‾ ) = 2 r(A)=r(\overline{A})=2 r(A)=r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)
三平面重合 r ( A ) = r ( A ‾ ) = 1 r(A)=r(\overline{A})=1 r(A)=r(A)=1

如果三个平面的法向量两两正交,那么对应的线性方程组有唯一解;若此时引入第四个平面,当且仅当第四个平面与前三个平面相交于同一个点时,方程组有唯一解,除此之外无解

无解情况 \mathbf{无解情况} 无解情况

几何意义代数表达
三平面两两 相交 \mathbf{相交} 相交,且交线相互平行 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3两两线性无关(任何两个面都不相交)
两平面平行,第三张平面与它们 相交 \mathbf{相交} 相交 r ( A ) = 2 , r ( A ‾ ) = 3 r(A)=2,r(\overline{A})=3 r(A)=2r(A)=3 n 1 , n 2 , n 3 n_1,n_2,n_3 n1,n2,n3中有两个向量线性相关(存在两个面平行但不重合)
三张平面相互平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3两两线性无关(任何两个面都不重合)
两张平面重合,第三张平面与它们平行但不重合 r ( A ) = 1 , r ( A ‾ ) = 2 r(A)=1,r(\overline{A})=2 r(A)=1r(A)=2 β 1 , β 2 , β 3 β_1,β_2,β_3 β1,β2,β3中有两个向量线性相关(存在两个面重合)

7.7 线性表出

在这里插入图片描述

在这里插入图片描述

8 向量空间

在这里插入图片描述
在这里插入图片描述

8.1 向量空间中的坐标

在这里插入图片描述

题型1:要求一个非零向量 b \mathbf{b} b,使得它在两个不同基 { a 1 , a 2 , a 3 } \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\} {a1,a2,a3} { β 1 , β 2 , β 3 } \{\mathbf{β}_1, \mathbf{β}_2, \mathbf{β}_3\} {β1,β2,β3} 下的坐标相同。设 b \mathbf{b} b 在这两个基下的坐标为 ( x 1 , x 2 , x 3 ) (x_1, x_2, x_3) (x1,x2,x3),即:
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3
b = x 1 β 1 + x 2 β 2 + x 3 β 3 \mathbf{b} = x_1\mathbf{β}_1 + x_2\mathbf{β}_2 + x_3\mathbf{β}_3 b=x1β1+x2β2+x3β3
两式相减,得到
x 1 ( a 1 − β 1 ) + x 2 ( a 2 − β 2 ) + x 3 ( a 3 − β 3 ) = 0 x_1(\mathbf{a}_1 - \mathbf{β}_1) + x_2(\mathbf{a}_2 - \mathbf{β}_2) + x_3(\mathbf{a}_3 - \mathbf{β}_3) = 0 x1(a1β1)+x2(a2β2)+x3(a3β3)=0
为了满足上述等式,并且因为 b \mathbf{b} b 是非零向量,所以 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3 至少有一个不为零。这表明 a 1 − β 1 \mathbf{a}_1 - \mathbf{β}_1 a1β1 a 2 − β 2 \mathbf{a}_2 - \mathbf{β}_2 a2β2 a 3 − β 3 \mathbf{a}_3 - \mathbf{β}_3 a3β3 必须是线性相关的。
解齐次方程组
( a 1 − β 1 a 2 − β 2 a 3 − β 3 ) ( x 1 x 2 x 3 ) = ( 0 0 0 ) \begin{pmatrix} \mathbf{a}_1 - \mathbf{β}_1 & \mathbf{a}_2 - \mathbf{β}_2 & \mathbf{a}_3 - \mathbf{β}_3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} (a1β1a2β2a3β3) x1x2x3 = 000

得解坐标 x 1 , x 2 , x 3 x_1, x_2, x_3 x1,x2,x3,从而得到向量 b \mathbf{b} b
b = x 1 a 1 + x 2 a 2 + x 3 a 3 \mathbf{b} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 b=x1a1+x2a2+x3a3

8.2 过渡矩阵

在这里插入图片描述

在这里插入图片描述

8.3 坐标变换

在这里插入图片描述

在这里插入图片描述

9 特征值特征向量

注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量! 注意:方程组可以有零解,但特征向量决不能是零向量!
A ∗ 、 A k ( k ≠ − 1 ) 的特征向量不一定是 A 的特征向量 \boldsymbol{A^*}、\boldsymbol{A^k}(k≠-1)的特征向量不一定是\boldsymbol{A}的特征向量 AAk(k=1)的特征向量不一定是A的特征向量
A − 1 、 k A ( k ≠ 0 ) 的特征向量一定是 A 的特征向量 \boldsymbol{A^{-1}}、\boldsymbol{kA}(k≠0)的特征向量一定是\boldsymbol{A}的特征向量 A1kA(k=0)的特征向量一定是A的特征向量

矩阵特征值对应特征向量
A \boldsymbol{A} A λ \boldsymbol{λ} λ α \boldsymbol{α} α
A T \boldsymbol{A^T} AT λ \boldsymbol{λ} λ 重新计算 \boldsymbol{重新计算} 重新计算
将 A 对称化得到 B = A + A T 2 \boldsymbol{将A对称化得到B=\frac{A+A^T}{2}} A对称化得到B=2A+AT 重新计算 \boldsymbol{重新计算} 重新计算 重新计算 \boldsymbol{重新计算} 重新计算
k A \boldsymbol{kA} kA k λ \boldsymbol{kλ} α \boldsymbol{α} α
A k \boldsymbol{A^k} Ak λ k \boldsymbol{λ^k} λk α \boldsymbol{α} α
f ( A ) \boldsymbol{f(A)} f(A) f ( λ ) \boldsymbol{f(λ)} f(λ) α \boldsymbol{α} α
A − 1 \boldsymbol{A^{-1}} A1 1 λ \boldsymbol{\frac{1}{λ}} λ1 α \boldsymbol{α} α
A ∗ \boldsymbol{A^*} A ∣ A ∣ λ \boldsymbol{\frac{|A|}{λ}} λA α \boldsymbol{α} α
P − 1 A P = B \boldsymbol{P^{-1}AP=B} P1AP=B λ \boldsymbol{λ} λ P − 1 α \boldsymbol{P^{-1}α} P1α
P − 1 f ( A ) P = f ( B ) \boldsymbol{P^{-1}f(A)P=f(B)} P1f(A)P=f(B) f ( λ ) \boldsymbol{f(λ)} f(λ) P − 1 α \boldsymbol{P^{-1}α} P1α

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

9.1 施密特正交化

在这里插入图片描述
在这里插入图片描述

9.2 用特征值和特征向量求A

在这里插入图片描述
在这里插入图片描述

10 相似

10.1 相似的五个性质

在这里插入图片描述

10.2 相似的结论

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

10.3 相似对角化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

11 实对称矩阵(必能相似对角化)

在这里插入图片描述
如果矩阵 A A A 不是实对称矩阵,则不同特征值对应的特征向量不一定相互正交。

在这里插入图片描述

12 正交矩阵

在这里插入图片描述
在这里插入图片描述

13 二次型

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

13.1 惯性定理

在这里插入图片描述
在这里插入图片描述

13.2 配方法

在这里插入图片描述

13.3 正交变换法

13.3.1 常规计算

在这里插入图片描述
在这里插入图片描述

13.3.2 反求参数,A或(f)

13.3.3 最值问题

在这里插入图片描述
在这里插入图片描述

13.3.4 几何应用

二次曲面 f = x T A x = 1 f=x^TAx=1 f=xTAx=1的类型

λ 1 , λ 2 , , λ 3 的符号 λ_1,λ_2,,λ_3的符号 λ1,λ2,,λ3的符号 f ( x 1 , x 2 , x 3 ) = 1 f(x_1,x_2,x_3)=1 f(x1,x2,x3)=1
3正椭球面
2正1负单页双曲面
1正2负双叶双曲面 f = 0 时为锥面 f=0时为锥面 f=0时为锥面
2正1零椭圆柱面
1正1负1零双曲柱面

在这里插入图片描述

14 合同

对于任意的 n × n n \times n n×n 矩阵 A A A B B B,如果存在一个可逆矩阵 C C C 使得:

C T A C = B C^TAC = B CTAC=B

则称矩阵 A A A B B B合同矩阵,并且这个变换叫做合同变换。

变换特点

  1. 行列同步:合同变换中的行变换和列变换可同步进行。

  2. 不改变矩阵的秩:合同变换保持矩阵的秩。

  3. 二次型化简:合同变换常用于二次型的化简,使得原矩阵的结构得到简化,同时保持二次型的性质。

在这里插入图片描述

14.1 实对称矩阵的合同

两个实对称矩阵 A A A B B B 如果是合同的,即存在一个可逆矩阵 C C C 使得 C T A C = B C^TAC = B CTAC=B,那么它们的惯性指数(正惯性指数、负惯性指数和零惯性指数的个数)必须相同

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

15 正定二次型(正定矩阵)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正定矩阵

  • 定义:正定矩阵是一个对称矩阵,并且对于任意非零向量 x \mathbf{x} x,有 x T A x > 0 \mathbf{x}^T A \mathbf{x} > 0 xTAx>0
  • 性质:正定矩阵的特征值都是正数,通常用于优化问题,表示能量最小化等场景。能量最小化通常与目标函数的最小化相关联。比如在机器学习中的损失函数或在经济学中的成本函数,这些函数的最小值往往代表最佳解。正定矩阵在这种场景中非常重要,因为它对应的二次型函数如果是正定的,那么优化问题的目标函数就有一个唯一的最小值。这个最小值就是能量最小化的解。

二次型矩阵

  • 定义:二次型矩阵是描述二次型函数的对称矩阵,形式为 f = x T A x f= \mathbf{x}^T A \mathbf{x} f=xTAx,其中 A A A 是对称矩阵。
  • 性质:二次型矩阵可以是正定的、半正定的、负定的或不定的,具体取决于函数 f f f 的符号情况。

两者的区别

  • 范围不同:正定矩阵是特定类型的二次型矩阵,即二次型矩阵中的一种特殊情况。
  • 判别标准:正定矩阵要求对于所有非零向量 x \mathbf{x} x x T A x \mathbf{x}^T A \mathbf{x} xTAx 必须大于零;而二次型矩阵可以根据其对应二次型的符号不同,具有不同的性质。

16 反对称矩阵

在这里插入图片描述

反对称矩阵(也称为斜对称矩阵)是一类特殊的矩阵,其定义是矩阵的转置等于其负矩阵,即对于矩阵 ( A ) 来说,反对称条件为:

A T = − A A^T = -A AT=A

具体来说,矩阵中的元素满足:
a i j = − a j i a_{ij} = -a_{ji} aij=aji
这意味着矩阵的对角线元素必须为零(即 a i i = 0 a_{ii} = 0 aii=0),因为 a i i = − a i i a_{ii} = -a_{ii} aii=aii,这只有在 a i i = 0 a_{ii} = 0 aii=0 时成立。例如:一个 3 × 3 3×3 3×3 的反对称矩阵为:
A = ( 0 a 12 a 13 − a 12 0 a 23 − a 13 − a 23 0 ) A = \begin{pmatrix} 0 & a_{12} & a_{13} \\ -a_{12} & 0 & a_{23} \\ -a_{13} & -a_{23} & 0 \end{pmatrix} A= 0a12a13a120a23a13a230

反对称矩阵的性质:

  1. 对角线元素为零:反对称矩阵的对角线元素必须为零。
  2. 特征值性质:反对称矩阵的特征值要么是零,要么是纯虚数(对于实数反对称矩阵)。
  3. 奇数维度的行列式为零:如果反对称矩阵的维度是奇数,那么其行列式为零。这是因为反对称矩阵在奇数维度下的非零特征值成对出现,每对特征值互为相反数,导致行列式为零。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432114.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue3 + ElementPlus 的后台菜单指引

文章目录 需求实现思路 需求 实现思路 引导页用 Drive.js 基本的使用操作这里写了一些菜单使用 ElementPlus 的组件&#xff0c;可以调用组件中暴露的这个方法&#xff0c;具体使用方法在这里说明 二者结合一下&#xff0c;就可以有这样的效果了

2024网安周 | 百度安全深度参与,探索人工智能与数字安全的融合发展之路

9月9日-15日&#xff0c;2024年国家网络安全宣传周在全国范围内统一举行&#xff0c;本届网安周继续以“网络安全为人民&#xff0c;网络安全靠人民”为主题&#xff0c;由中央宣传部、中央网信办、教育部、工业和信息化部、公安部、中国人民银行、国家广播电视总局、全国总工会…

K8s flink-operator 例子

1.参考官网&#xff1a; https://nightlies.apache.org/flink/flink-kubernetes-operator-docs-stable/docs/try-flink-kubernetes-operator/quick-start/ 2.首先环境具备 k8s、helm 我的环境 k8s 1.30 最新版本了 [rootk8s-master ~]# kubectl get no -owide NAME …

C/C++逆向:循环语句逆向分析

在逆向分析中&#xff0c;循环语句通常会以特定的汇编模式或结构体现出来。常见的循环语句包括 for 循环、while 循环和 do-while 循环。由于不同的编译器会根据代码优化的级别生成不同的汇编代码&#xff0c;分析循环的模式也可能会有所不同。以下是三种常见循环语句的汇编分析…

uni-app+vue3开发微信小程序使用本地图片渲染不出来报错[渲染层网络层错误]Failed to load local image resource

我把图片放在assets里面页面通过相对路径引入。结果一直报错。 最后我把图片放在static文件夹下面。然后修改路径指向static就可以了 或者是我们必须先import 这个图片然后在使用 import banner1 from ../../assets/images/banner/banner1.png; <image :src"banner…

【时时三省】(C语言基础)指针笔试题5

山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 笔试题5 这个a数组代表着5行5列 如下图 a[4][2]是第5行的数组 第五行下标为2的位置 取出的是这个位置的地址

【Linux学习】1-2 新建虚拟机ubuntu环境

1.双击打开VMware软件&#xff0c;点击“创建新的虚拟机”&#xff0c;在弹出的中选择“自定义&#xff08;高级&#xff09;” 2.点击下一步&#xff0c;自动识别ubuntu光盘映像文件&#xff0c;也可以点击“浏览”手动选择&#xff0c;点击下一步 3.设置名称及密码后&#xf…

kibana开启访问登录认证

编辑es配置文件&#xff0c;添加以下内容开启es认证 vim /etc/elasticsearch/elasticsearch.yml http.cors.enabled: true http.cors.allow-origin: "*" http.cors.allow-headers: Authorization xpack.security.enabled: true xpack.security.transport.ssl.enable…

WPF一个控件根据另一个控件的某种状态的改变从而改变自身某种状态

WPF 一个控件根据另一个控件的某种状态的改变从而改变自身某种状态 前提&#xff0c;这里根据 Image 控件 Source 属性为 null 时&#xff0c;让 Label 控件可见&#xff0c;不为 null 时, Label 控件不可见为例子展示&#xff0c;代码如下&#xff1a; <Canvas><Ima…

Qt基础之四十七:管理员权限

在Windows系统中,以管理员身份运行的意思是,用系统管理最高权限运行程序。一般来说,只有当某些操作涉及系统保护区域时,才会需要用户授权管理员运行。如此一来,程序、命令在运行过程中,就有了足够权限,更改系统设置或注册表。 一.Qt程序加入管理员权限的几种方式 1.MS…

理解和使用语言模型的监督微调 (SFT)

大型语言模型&#xff08;LLM&#xff09;的训练通常分为几个阶段&#xff0c;包括预训练和几个微调阶段&#xff1b;见下文。 虽然预训练的成本很高&#xff08;即几十万美元的计算费用&#xff09;&#xff0c;但微调 LLM&#xff08;或执行上下文学习&#xff09;的成本却很…

开源链动 2+1 模式 S2B2C 商城小程序:社交电商团队为王的新引擎

摘要&#xff1a;本文深入探讨在社交电商领域中&#xff0c;团队的重要性以及如何借助开源链动 21 模式 S2B2C 商城小程序&#xff0c;打造具有强大竞争力的团队&#xff0c;实现个人价值与影响力的放大&#xff0c;创造被动收入&#xff0c;迈向财富自由之路&#xff0c;同时为…

职场能力强的人都在做什么---今日头条

【职场里,能力强的人都在做哪些事... - 今日头条】https://m.toutiao.com/is/ikn6kt9q/ 知识雷达 2024-09-21 16:33 目录 职场里,能力强的人都在做哪些事呢? 1、复盘; 2、多角度思考;3、记录信息; 4、永远积极主动;5、主动获取信息差; 6、明确人和人的关系;7、…

蓝桥杯备赛---引言

我是来自成都锦城学院的2021级学生&#xff0c;第一次参加第十五届蓝桥杯嵌入式赛道获得了国二的名次&#xff0c;接下来将为大家分享各个模块的代码&#xff0c;可以速成省一&#xff0c;但想要取得国一的成绩则需要补偿数据结构、基本c语言函数等相关知识&#xff0c;很遗憾没…

低代码BPA(业务流程自动化)技术探讨

一、BPA流程设计平台的特点 可视化设计工具 大多数BPA流程设计平台提供直观的拖拽式界面&#xff0c;用户可以通过图形化方式设计、修改及优化业务流程。这种可视化的方式不仅降低了门槛&#xff0c;还便于非技术人员理解和参与流程设计。集成能力 现代BPA平台通常具备与其他系…

栈的基本概念和及具体实现

今天给大家介绍一下栈的基本概念及实现&#xff01;话不多说&#xff0c;立即开始&#xff01; 1.栈的概念&#xff1a; 一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈 顶&#xff0c;另一端称为栈底。栈中的…

基于遗传优化算法的多AGV栅格地图路径规划matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 栅格地图表示 4.2 路径编码 4.3 目标函数 5.完整程序 1.程序功能描述 基于遗传优化算法的多AGV栅格地图路径规划matlab仿真&#xff0c;分别测试单个AGC的路径规划和多个AGV的路径规划…

SpringBoot Validation不生效该怎么办?

SpringBoot Validation不生效该怎么办&#xff1f; 确认maven依赖查看依赖关系并处理验证&#xff1a;校验生效&#xff0c;成功反思 能问出这个问题说明你已经使用了Null、NotEmpty等等等校验注解&#xff0c;但是没有生效&#xff0c;我也出现过这种情况&#xff0c;请看我修…

计算机毕业设计之:宠物服务APP的设计与实现(源码+文档+讲解)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

[OpenGL]使用OpenGL绘制带纹理三角形

一、简介 本文介绍了如何使用使用OpenGL绘制带纹理三角形。 在绘制带纹理的三角形时&#xff0c; 首先使用.h读取准备好的.png格式的图片作为纹理&#xff0c;然后在fragment shader中使用 ... in vec2 textureCoord; uniform sampler2D aTexture1; void main() {FragColor …