金属增材制造咋突破?纳米纹理粉末如何助力金属增材制造?

       大家好,今天我们来了解一篇金属增材制造文章——《High absorptivity nanotextured powders for additive manufacturing》发表于《Science Advances》。金属增材制造在医疗、航空航天等领域,它潜力巨大,但目前可打印的金属材料有限,像铜、钨等金属的打印就面临诸多挑战。为解决这些问题,科学家们进行了深入研究,发现通过对金属粉末进行蚀刻,引入纳米纹理,能提高粉末的吸收率,从而拓展可打印材料的范围,提高制造的光热效率和打印质量。这一发现为金属增材制造带来了新的突破,让我们一起来详细了解一下吧。

*本文只做阅读笔记分享*

一、引言

金属增材制造(AM)在众多领域具有广泛应用潜力,但目前可靠打印的材料有限,高反射率和难熔金属的自由形式打印受到粉末原料光热性质的限制。例如,铜、银及其共晶合金在近红外的低吸收率和高热扩散率,以及钨的高导热性和高熔点,都给增材制造带来了挑战。

二、研究背景与现状

现有方法的局限性

改变材料属性:通过添加纳米颗粒等添加剂来改变材料的凝固和再结晶,虽能实现一些金属的打印,但可能会影响材料的其他性能,如铜的导电性降低或出现凝固裂纹等。

修改仪器参数:使用高功率红外LPBF系统或高功率绿色激光系统来提高激光吸收功率,但存在损坏光学组件、成本高昂等问题。

其他方法:预加热技术常用于处理难熔金属,但可能需要将基板预热到1000°C,且在高能量密度电子束系统中效果最佳。

当前研究的空白

目前没有一种方法能在不合金化或使用添加剂的情况下,通过修改粉末原料来提高粉末的吸收率、动力学或打印质量。

三、实验过程与结果

3.1 蚀刻产生纳米表面结构

实验过程:

材料与试剂:使用两种铜粉末(LPW/Carpenter Additive,99.95%纯度;LLNL,99.99% 纯度)、Eutectic AgCu(LPW/Carpenter Additive,28.1 wt% Cu和71.9 wt% Ag)和平均直径为45μm的纯W粉末(Tekna)。蚀刻铜和AgCu粉末时,使用FeCl₃、HCl和乙醇的溶液;蚀刻钨粉末时,使用30% H₂O₂。

蚀刻步骤:以铜粉末为例,对于购买的铜粉末(LPW Technology Ltd.),先在250ml 锥形瓶中加入25 ml乙酸,蚀刻粉末表面的原生氧化铜层5分钟,然后加入100 ml FeCl₃蚀刻溶液,在400 rpm下搅拌 1、5 或 10 小时,随后静置5分钟,弃去FeCl₃溶液,用新鲜乙醇清洗粉末八次,直至溶液清澈,最后将粉末倒在培养皿中干燥5小时,并用< 75 μm 筛网筛分。

结果展示:

表面形貌变化:SEM图像显示,随着蚀刻时间的增加,铜粉末表面从光滑逐渐变得粗糙。初始时表面光滑,1小时蚀刻后开始出现均匀粗糙度,5小时蚀刻后晶界蚀刻明显,出现大量蚀刻晶界,10小时蚀刻后晶界高度可见,表面出现约100 nm的立方结构。

放大图像显示,粉末表面特征尺寸随着蚀刻时间增加而变大,表面逐渐变得更粗糙。

AgCu和W粉末也有类似的变化。

蚀刻速率计算:通过计算Cu05纳米断层扫描结果的有效体积蚀刻速率,估计有效体积蚀刻速率为11μm³/小时。对于特定粉末颗粒,计算出前5小时的有效表面深度蚀刻速率约为 71nm/小时。

3.2 纳米纹理表面增加粉末吸收率

实验过程:

实验装置:构建定制量热实验装置,安装在商业金属3D打印机(Aconity Mini 3D)的构建板上。打印机配备200W和1070 nm掺镱光纤激光器,使用C10100纯度(99.99%)的铜基板,加工成2mm厚度,带有4mm×4mm×50μm的凹陷区域,用于填充铜粉末进行量热实验。

实验参数:在激光功率为175 W和两种扫描速度(100和656mm/s)下,对每种粉末类型进行至少三次实验。

结果展示:

吸收率测量:纳米纹理粉末的吸收率相比购买的粉末有所提高。在较慢的扫描速度 100mm/s下,Cu00 粉末的吸收率为0.172,Cu01、Cu05和Cu10蚀刻粉末的吸收率分别为0.292、0.286和0.272;在较快的扫描速度656mm/s下,Cu00粉末的吸收率为 0.219,蚀刻粉末的吸收率相应为 0.272、0.372 和 0.278。AgCu和W也表现出吸收率增强因子,W从0.45增加到0.58。

机理分析:EM 波模拟表明,纳米纹理表面增强吸收率的原因是表面沟槽中的等离激元共振和光集中增强了光-物质相互作用。对1070 nm波长入射平面波,模拟场分布显示某些沟槽提供了强近场强度并促进局部吸收。

单个蚀刻粒子的平均吸收增强因子为1.8,与测量值1.7一致。进一步分析发现,吸收增强与沟槽尺寸有关,较高的沟槽在亚波长宽度时吸收增加,Cu10粉末由于Cu再沉积导致表面沟槽较浅,从而吸收率下降。此外,Cu05粉末表面的宽沟槽可支持更高阶的表面等离子体共振,进一步提高了吸收。

射线追踪模拟显示,单个蚀刻粒子的吸收率增强对粉末床吸收率的影响与粉末床颗粒尺寸分布有关,在双峰分布的粉末中,吸收率提高更快。

3.3 纳米纹理粉末在低功率下表现出更好的打印性能

实验过程:

打印设备:使用低体积定制的LPBF系统,配备1070nm波长的掺镱光纤激光器,最大功率为1kW。

打印参数:打印不同粉末系统的6 mm直径圆柱体,激光功率范围为100-500 W,激光扫描速度为300和600mm/s,层尺寸和影线间距分别为50和80μm,构建腔室氧浓度小于100 ppm。

结果展示:

相对密度测量:在最低能量密度(83J/mm³)下,蚀刻粉末相比购买的粉末能提高相对密度。例如,在100W和300mm/s的扫描条件下,Cu10粉末打印的密度为0.926(测量误差 ±0.004),而Cu00粉末为0.856±0.003;Cu05粉末的相对密度为0.870±0.005。当能量密度超过200J/mm³时,所有打印的相对密度都收敛到约0.98-0.99。

纳米断层扫描和SEM图像显示,在低功率下,纳米纹理粉末的相对密度可能会有更多波动。

打印结构展示:纳米纹理粉末能用于打印包括50mm 长的三重周期最小表面等结构,AgCu 结构可在稍高能量密度下打印,打印的W结构硬度为5GPa,且能量密度低于其他方法。

四、讨论

表面纳米纹理的自我演变:铜粉末在蚀刻过程中经历均匀蚀刻、晶界蚀刻和再沉积三个主要阶段。蚀刻过程中,FeCl₃溶液通过两个反应剥离铜粉末表面的铜,形成CuCl₂,CuCl₂进一步作为二次蚀刻剂与粉末表面的铜形成2CuCl。在5-10小时的进一步处理中,粉末表面会重新沉积立方纳米晶体,且不改变原料成分。通过计算可知,100g平均粒径为30μm的粉末在10小时蚀刻过程中,约有0.86g的Cu可用于在100ml蚀刻溶液中形成1.3g的CuCl,这与HCl中CuCl的溶解度极限一致,支持了再沉积形成立方结构的机制。

自我演变的表面纳米纹理改变原位激光-粉末相互作用:所有纳米纹理粉末的吸收率都相对提高,通过在金属表面引入沟槽来增强光吸收的方法对高导电性金属(如Ag、Cu和 W)具有普遍性,但每种材料的沟槽特性需要一次性优化。对于Cu05粉末吸收率增强的原因,一方面是表面纳米沟槽提供了高吸收率区域,另一方面是宽沟槽支持更高阶的表面等离子体共振。而W粉末由于表面纳米结构更对称,吸收率增强效果相对较微妙,可能的机制包括局部电场强度和残余氧化钨中的等离子体模式等,但具体机制需要进一步研究。射线追踪模拟表明,通过纳米纹理改善单颗粒吸收,可以更快地提高非均匀(如双峰分布)粉末床的吸收率。

纳米纹理粉末实现打印:增强的纳米纹理粉末固有吸收率可提高打印质量,可能的机制包括减少熔合缺陷等。在打印过程中,激光不仅入射到熔池上,还会入射到来自剥蚀区的粉末颗粒上,这些粉末颗粒可能会因吸收散射的激光而熔化,而纳米纹理粉末增强的吸收率有助于提高打印质量,但具体贡献需要专门的实验和计算研究。

五、结论

本研究通过蚀刻工艺制备了改性金属粉末原料,提高了粉末的吸收率。纳米纹理表面通过等离激元共振和光集中以及多次散射事件增强了粉末的吸收率。纳米纹理粉末在低能量密度下能够实现更好的打印性能,可用于打印高纯度铜和钨金属结构。这种方法为扩展可打印材料的范围提供了一种通用的途径,同时提高了制造中的光热效率和打印质量。

六、一起做题

1、金属增材制造(AM)目前的应用受到限制,主要是因为( )

A. 可打印的材料范围小

B. 打印成本高

C. 打印设备复杂

D. 打印速度慢

2、为了使铜能够打印,过去常采用的方法不包括( )

A. 添加纳米颗粒

B. 使用高功率红外 LPBF 系统

C. 改变铜的表面形态

D. 预加热

3、本文中开发的蚀刻过程用于生产( )

A. 高纯度金属粉末

B. 改性金属粉末原料

C. 合金粉末

D. 纳米颗粒

4、经过蚀刻的铜粉末表面经历的阶段不包括( )

A. 氧化

B. 均匀蚀刻

C. 晶界蚀刻

D. 再沉积

5、纳米纹理粉末提高吸收率的主要原因是( )

A. 表面沟槽中的等离激元共振和光集中

B. 粉末颗粒变小

C. 粉末的化学成分改变

D. 增加了添加剂

6、纳米纹理粉末在低功率下打印的优势不包括( )

A. 提高相对密度

B. 降低能量消耗

C. 减少打印缺陷

D. 提高打印速度

7、文章中验证纳米纹理粉末吸收率提高的实验是( )

A. 打印实验

B. 蚀刻实验

C. 量热实验

D. 射线追踪实验

8、纳米纹理粉末对打印质量的影响机制主要是( )

A. 增强的吸收率减少熔合缺陷

B. 改变了粉末的流动性

C. 降低了粉末的熔点

D. 提高了粉末的硬度

9、本文中用于研究纳米纹理粉末特性的方法不包括( )

A. 纳米和微观 X 射线断层扫描

B. 电子显微镜观察

C. 射线追踪模拟

D. 拉伸实验

10、关于钨粉末的蚀刻,下列说法正确的是( )

A. 使用 FeCl₃、HCl 和乙醇的溶液

B. 使用 30% H₂O₂

C. 蚀刻时间为 5 - 10 小时

D. 产量约为 90%

参考文献:

Tertuliano OA, et al. High absorptivity nanotextured powders for additive manufacturing. Sci Adv. 2024 Sep 6;10(36):eadp0003.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432251.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

握手传输 状态机序列检测(记忆科技笔试题)_2024年9月2日

发送模块循环发送0-7&#xff0c;在每个数据传输完成后&#xff0c;间隔5个clk&#xff0c;发送下一个 插入寄存器打拍处理&#xff0c;可以在不同的时钟周期内对信号进行同步&#xff0c;从而减少亚稳态的风险。 记忆科技笔试题&#xff1a;检测出11011在下一个时钟周期输出…

PowerPoint技巧:将幻灯片里的图片背景设置为透明

在PPT中添加了图片&#xff0c;想要将图片中的背景设置为透明或者想要抠图&#xff0c;有什么方法吗&#xff1f;今天分享两个方法。 方法一&#xff1a; 添加图片&#xff0c;选中图片之后&#xff0c;点击【图片格式】功能&#xff0c;点击最左边的【删除背景】 PPT会自动帮…

vue3扩展echart封装为组件库-快速复用

ECharts ECharts&#xff0c;全称Enterprise Charts&#xff0c;是一款由百度团队开发并开源&#xff0c;后捐赠给Apache基金会的纯JavaScript图表库。它提供了直观、生动、可交互、可个性化定制的数据可视化图表&#xff0c;广泛应用于数据分析、商业智能、网页开发等领域。以…

Distilabel合成数据生成框架简明教程

Distilabel 是一个用于合成数据和 AI 反馈的框架&#xff0c;适用于需要基于经过验证的研究论文的快速、可靠和可扩展的管道的工程师。 NSDT工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器 -…

Webpack教程-概述

什么是Webpack Webpack是一个静态资源打包工具。它以一个或多个文件作为打包入口&#xff0c;将整个项目所有的文件编译组合成一个或多个文件进行输出。(输出的文件即编译好的文件&#xff0c;就可以在浏览器上运行) Webpack官网 核心概念 entry (入口) entiry 指webpack…

企业源代码怎么保护?2024年最新推荐10款源代码加密软件

在现代企业中&#xff0c;源代码是核心资产之一&#xff0c;保护源代码安全已成为企业管理中的重中之重。源代码的泄露不仅会导致企业知识产权的流失&#xff0c;还可能带来竞争对手的复制和攻击。因此&#xff0c;采用强大的源代码加密工具已成为许多企业的必要措施。2024年&a…

深入探索 RUM 与全链路追踪:优化数字体验的利器

作者&#xff1a;梅光辉&#xff08;重彦&#xff09; 背景介绍 随着可观测技术的持续演进&#xff0c;多数企业已广泛采用 APM、Tracing 及 Logging 解决方案&#xff0c;以此强化业务监控能力&#xff0c;尤其在互联网行业&#xff0c;产品的体验直接关系着用户的口碑&…

Adaptive Graph Contrastive Learning for Recommendation

Adaptive Graph Contrastive Learning for Recommendation&#xff08;KDD23&#xff09; 源码&#xff1a; https://github.com/HKUDS/AdaGCL 摘要 图神经网络&#xff08;GNNs&#xff09;最近作为推荐系统中的有效协同过滤&#xff08;CF&#xff09;方法受到关注。基于GNN…

昇思MindSpore进阶教程-优化器

大家好&#xff0c;我是刘明&#xff0c;明志科技创始人&#xff0c;华为昇思MindSpore布道师。 技术上主攻前端开发、鸿蒙开发和AI算法研究。 努力为大家带来持续的技术分享&#xff0c;如果你也喜欢我的文章&#xff0c;就点个关注吧 模型训练过程中&#xff0c;使用优化器更…

BACnet MS/TP协议解析(3)

1、MS/TP帧格式 例如数据&#xff08;hex&#xff09;&#xff1a;55 FF 01 03 02 00 00 D7 0x550xff0x010x030x020x000x000xD7BACnet数据BACnet数据CRC帧头帧类型目的地址源地址BACnet数据长度&#xff0c;大端CRC 2、帧类型 帧类型目前定义为 0-7&#xff0c;8-127 为 AS…

【Unity踩坑】Textmesh Pro是否需要加入Version Control?

问题&#xff1a;如果Unity 项目中用到了Textmesh pro&#xff0c;相关的文件是否也需要签入呢&#xff1f; 回答&#xff1a; 在使用 Unity 的 Version Control&#xff08;例如 Plastic SCM 或 Git&#xff09;时&#xff0c;如果你的项目中使用了 TextMesh Pro&#xff0c…

TCN预测 | MATLAB实现TCN时间卷积神经网络多输入单输出回归预测

TCN预测 | MATLAB实现TCN时间卷积神经网络多输入单输出回归预测 目录 TCN预测 | MATLAB实现TCN时间卷积神经网络多输入单输出回归预测预测效果基本介绍模型描述程序设计参考资料预测效果

武汉正向科技 格雷母线检测方式 :车检,地检

正向科技|格雷母线原理运用-车检&#xff0c;地检 地上检测方式 地址编码器和天线箱安装在移动站上&#xff0c;通过天线箱发射地址信号&#xff0c;地址解码器安装在固定站&#xff08;地面&#xff09;上&#xff0c;在固定站完成地址检测。 车上检测方式 地址编码器安装在…

MySQL Mail服务器集成:如何配置发送邮件?

MySQL Mail插件使用指南&#xff1f;怎么优化 MySQL发邮件性能&#xff1f; MySQL Mail服务器的集成&#xff0c;使得数据库可以直接触发邮件发送&#xff0c;极大地简化了应用架构。AokSend将详细介绍如何配置MySQL Mail服务器&#xff0c;以实现邮件发送功能。 MySQL Mail&…

SegFormer网络结构的学习和重构

因为太多的博客并没有深入理解,本文是自己学习后加入自己深入理解的总结记录&#xff0c;方便自己以后查看。 segformer中encoder、decoder的详解。 学习前言 一起来学习Segformer的原理,如果有用的话&#xff0c;请记得点赞关注哦。 一、Segformer的网络结构图 网络结构&…

JavaWeb 12.Tomcat10

希望明天能出太阳 或者如果没有太阳的话 希望我能变得更加阳光一点 —— 24.9.25 一、常见的JavaWeb服务器 Web服务器通常由硬件和软件共同构成 硬件&#xff1a;电脑&#xff0c;提供服务供其他客户电脑访问 软件&#xff1a;电脑上安装的服务器软件&#xff0c;安装后能提…

TIOBE 编程指数 9 月排行榜公布 VB.Net第七

原文地址&#xff1a;百度安全验证 IT之家 9 月 8 日消息&#xff0c;TIOBE 编程社区指数是一个衡量编程语言受欢迎程度的指标&#xff0c;评判的依据来自世界范围内的工程师、课程、供应商及搜索引擎&#xff0c;今天 TIOBE 官网公布了 2024 年 9 月的编程语言排行榜&#xf…

介绍 Agent Q:迎接下一代 AI 自动化助手

引言 在科技领域&#xff0c;随着人工智能的不断进步&#xff0c;自动化工具日益成为提升效率的重要手段。今天&#xff0c;我将向大家介绍一款名为 Agent Q 的 AI 自动化助手。这款工具不仅能够完成复杂的任务&#xff0c;还支持交互式命令行操作&#xff0c;使得用户体验更为…

飞驰云联亮相电子半导体数智化年会 获”数据交换领域最佳厂商”

2024年9月20日&#xff0c;“2024第二届电子半导体/智能制造数智化年会暨品牌出海论坛”于上海隆重开幕&#xff0c;Ftrans飞驰云联作为国内领先的数据安全交换厂商&#xff0c;应邀携半导体全场景产品和解决方案亮相此次峰会。会上进行了“智象奖”评选&#xff0c;Ftrans飞驰…

java并发之并发关键字

并发关键字 关键字一&#xff1a;volatile 可以这样说&#xff0c;volatile 关键字是 Java 虚拟机提供的轻量级的同步机制。 功能 volatile 有 2 个主要功能&#xff1a; 可见性。一个线程对共享变量的修改&#xff0c;其他线程能够立即得知这个修改。普通变量不能做到这一点&a…