前言 – 床长人工智能教程
全球土地覆盖10米的更精细分辨率观测和监测(FROM-GLC10)
这项工作和论文的目的是对2017年用不同卫星上的传感器获取的10米分辨率图像进行分类。我们通过10米分辨率的地图FROM-GLC10进行检查,并与我们2017年30米全球土地覆盖地图FROM-GLC30进行比较。我们发现,虽然结果是可比的,但10米地图确实提供了更多的空间细节。虽然达到了与30米分辨率数据相当的总体精度,但10米分辨率地图的实际精度只能通过从10米分辨率数据中收集的测试样本来正确评估。您可以在这里阅读该论文
关于FROM-GLC
全球土地覆盖数据是了解人类活动和全球变化之间复杂互动的关键信息来源。FROM-GLC(更精细的全球土地覆盖观测和监测)是利用大地卫星专题成像仪(TM)和增强型专题成像仪(ETM+)数据制作的第一个30米分辨率的全球土地覆盖图。
你可以在这里下载数据集,链接直接指向geotiff文件,你可以使用Uget这样的下载器来获取文件。
Finer Resolution Observation and Monitoring - FROM-GLC10 - (2017 V0.1)
免责声明:该数据集的全部或部分描述由作者或其作品提供。
数据预处理
下载数据集后,由于这些数据集是分类数据集,所以采用了MODE金字塔方案。作者提供了RGB值,并将其转换为十六进制代码,以创建一个调色板。该样本脚本还考虑到重新映射数值,以提供一个更连续的最大混合分布。
数据引用:
Chen, B., B. Xu, Z. Zhu, C. Yuan, H. Ping Suen, J. Guo, N. Xu, W. Li, Y. Zhao, and J. J. S. B. Yang. "Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017." Sci. Bull 64 (2019): 370-373.
分类表:
Class | Value | Remapped | Hex code |
---|---|---|---|
Background | 0 | 0 | #000000 |
Cropland | 10 | 1 | #a3ff73 |
Forest | 20 | 2 | #267300 |
Grass | 30 | 3 | #4ce600 |
Shrub | 40 | 4 | #70a800 |
Water | 60 | 5 | #005cff |
Impervious | 80 | 6 | #c500ff |
Bareland | 90 | 7 | #ffaa00 |
Snow/Ice | 100 | 8 | #00ffc5 |
Cloud | 120 | 9 | #ffffff |
代码:
var GLC10 = ee.ImageCollection("projects/sat-io/open-datasets/FROM-GLC10");
// Define a dictionary which will be used to make legend and visualize image on map
var dict = {"names": ["Background", "Cropland","Forest","Grass","Shrub","Water","Impervious","Bareland","Snow/Ice","Cloud"],"colors": ['#000000','#a3ff73','#267300','#4ce600','#70a800','#005cff','#c500ff','#ffaa00','#00ffc5','#ffffff']};// Create a panel to hold the legend widget
var legend = ui.Panel({style: {position: 'bottom-left',padding: '8px 15px'}
});// Function to generate the legend
function addCategoricalLegend(panel, dict, title) {// Create and add the legend title.var legendTitle = ui.Label({value: title,style: {fontWeight: 'bold',fontSize: '18px',margin: '0 0 4px 0',padding: '0'}});panel.add(legendTitle);var loading = ui.Label('Loading legend...', {margin: '2px 0 4px 0'});panel.add(loading);// Creates and styles 1 row of the legend.var makeRow = function(color, name) {// Create the label that is actually the colored box.var colorBox = ui.Label({style: {backgroundColor: color,// Use padding to give the box height and width.padding: '8px',margin: '0 0 4px 0'}});// Create the label filled with the description text.var description = ui.Label({value: name,style: {margin: '0 0 4px 6px'}});return ui.Panel({widgets: [colorBox, description],layout: ui.Panel.Layout.Flow('horizontal')});};// Get the list of palette colors and class names from the image.var palette = dict['colors'];var names = dict['names'];loading.style().set('shown', false);for (var i = 0; i < names.length; i++) {panel.add(makeRow(palette[i], names[i]));}Map.add(panel);}/*// Display map and legend ///
*/// Add the legend to the map
addCategoricalLegend(legend, dict, 'FROM-GLC10 Land Cover');var mosaic = GLC10.mosaic().remap([0,10,20,30,40,60,80,90,100,120],[0,1,2,3,4,5,6,7,8,9])// Add image to the map
Map.addLayer(mosaic, {min:0, max:9, palette:dict['colors']}, 'GLC 10m')
代码链接:
https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:global-landuse-landcover/GLC10
Credits, Attributions and License¶
This dataset is available under a Creative Commons BY-4.0 license.
Curated in GEE by: Samapriya Roy
Keywords: : landcover, landuse, lulc, 10m, global, world, sentinel 2, FROM-GLC
Last updated on GEE: 2022-09-10