神经网络(四):UNet图像分割网络

文章目录

  • 一、简介
  • 二、网络结构
    • 2.1编码器部分
    • 2.2解码器部分
    • 2.3完整代码
  • 三、实战案例


一、简介

  UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。该网络具有编码器和解码器结构,两种结构的功能如下:

  • 编码器:逐步提取输入图像的特征并降低空间分辨率。
  • 解码器:通过上采样操作将特征图恢复到原始输入图像的尺寸,并逐步生成分割结果。

【CNN角度的编码器、解码器】以卷积神经网络为例,输入为一个猫,进行特征提取后输出图片类别。

  • 编码器:完成对输入图片中猫的特征提取。
  • 解码器:将特征提取的结果解码为分类结果。

在这里插入图片描述
【RNN角度的编码器、解码器】以循环神经网络LSTM为例,输入为一个文本,进行特征提取再输出

  • 编码器:将文本表示为向量并实现特征提取。
  • 解码器:将向量转化为输出。

在这里插入图片描述
  UNet算法的关键创新是在解码器中引入了跳跃连接(Skip Connections),即将编码器中的特征图与解码器中对应的特征图进行连接。这种跳跃连接可以帮助解码器更好地利用不同层次的特征信息,从而提高图像分割的准确性和细节保留能力。

二、网络结构

  UNet的设计思想是通过编码器逐渐提取丰富的低级特征和高级特征,然后通过解码器逐渐恢复分辨率,并将低级特征和高级特征进行融合,以便获取准确且具有上下文信息的分割结果。这种U字形结构使得UNet能够同时利用全局(高分辨率时的特征图)和局部信息(低分辨率时的特征图),适用于图像分割任务。执行过程可粗略描述为:

输入层 -> 编码器(下采样模块 + 编码器模块) -> 解码器(上采样模块 + 解码器模块)-> 输出层。

即:

  • 编码器(Encoder)部分
    • 输入层:接受输入图像作为模型的输入
    • 下采样模块(Downsampling Block):由一系列卷积层(通常是卷积、批归一化和激活函数的组合)和池化层组成,用于逐渐减小特征图的尺寸和通道数。这样可以逐渐提取出更高级别的特征信息。
    • 编码器模块(Encoder Block):重复使用多个下采样模块,以便逐渐减小特征图的尺寸和通道数。每个编码器模块通常包含一个下采样模块和一个跳跃连接(Skip Connection),将上一级的特征图连接到下一级,以便在解码器中进行特征融合。
  • 解码器(Decoder)部分
    • 上采样模块(Upsampling Block):由一系列上采样操作(如反卷积或转置卷积)和卷积操作组成,用于逐渐增加特征图的尺寸和通道数。这样可以逐渐恢复分辨率并且保留更多的细节信息。
    • 解码器模块(Decoder Block):重复使用多个上采样模块,以便逐渐增加特征图的尺寸和通道数。每个解码器模块通常包含一个上采样模块、一个跳跃连接和一个融合操作(如拼接或加权求和),用于将来自编码器的特征图与当前解码器的特征图进行融合。
  • 输出层:最后一层是一个卷积层,用于生成最终的分割结果。通常,输出层的通道数等于任务中的类别数,并应用适当的激活函数(如sigmoid或softmax),以产生每个像素点属于各个类别的概率分布。

跳跃连接(skip connection):输入数据直接添加到网络某一层输出之上。这种设计使得信息可以更自由地流动,并且保留了原始输入数据中的细节和语义信息。 使信息更容易传播到后面的层次,避免了信息丢失。跳跃连接通常会通过求和操作或拼接操作来实现。
在这里插入图片描述
以图像分类任务为例,假设我们使用卷积神经网络进行特征提取,在每个卷积层后面都加入一个池化层来减小特征图尺寸。然而,池化操作可能导致信息损失。通过添加一个跳跃连接,将原始输入直接与最后一个池化层输出相加或拼接起来,可以保留原始图像中更多的细节和语义信息。

  以下内容参考文章:点击跳转

2.1编码器部分

在这里插入图片描述
  编码器部分由多个下采样模块(down sampling step)组成,每个下采样模块都由两个卷积层(卷积核大小为3x3,且与ReLU函数配合使用。由于图像尺寸变小,可见并未填充)和一个最大池化层(池化核大小2x2,步幅为2,将图像尺寸收缩一半)组成,并且每一次下采样操作后特征图的通道数均增加一倍。
  事实上,随着不断执行下采样模块(也成为收缩路径),特征图通道数随着卷积操作也不断增加,从而获取了图像的更多特征。并且在进入下一下采样模块前,进行 2x2 最大池化以获得最大像素值,虽然丢失一些特征,但保留最大像素值。通过这种方式,可将图像中目标的像素按类别进行分割。每一下采样模块的实现代码如下:
【第一个下采样模块】
  卷积操作:

        self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)#(572,572,1)->((572-3+1),(572-3+1),64)->(570,570,64)self.relu1_1 = nn.ReLU(inplace=True)self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) # (570,570,64)->((570-3+1),(570-3+1),64)->(568,568,64)self.relu1_2 = nn.ReLU(inplace=True)

  池化操作

#采用最大池化进行下采样,图片大小减半,通道数不变,由(568,568,64)->(284,284,64)
self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  

【第二个下采样模块】
  卷积操作:

        self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)self.relu2_1 = nn.ReLU(inplace=True)self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)self.relu2_2 = nn.ReLU(inplace=True)

  池化操作:

# 采用最大池化进行下采样(280,280,128)->(140,140,128)
self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  

  编码器部分总代码:

class Unet(nn.Module):def __init__(self):super(Unet, self).__init__()#第一个下采样模块self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)self.relu1_1 = nn.ReLU(inplace=True)self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0) self.relu1_2 = nn.ReLU(inplace=True)self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  #第二个下采样模块self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  #(284,284,64)->(282,282,128)self.relu2_1 = nn.ReLU(inplace=True)self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  #(282,282,128)->(280,280,128)self.relu2_2 = nn.ReLU(inplace=True)self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  #第三个下采样模块self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)self.relu3_1 = nn.ReLU(inplace=True)self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)self.relu3_2 = nn.ReLU(inplace=True)self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)#第四个下采样模块self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)self.relu4_1 = nn.ReLU(inplace=True)self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)self.relu4_2 = nn.ReLU(inplace=True)self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2) #第五个下采样模块self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024self.relu5_1 = nn.ReLU(inplace=True)self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)self.relu5_2 = nn.ReLU(inplace=True)

在五个下采样操作后,特征图大小变为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024)

2.2解码器部分

在这里插入图片描述

  • up-conv 2x2:上采样操作,通过反卷积操作实现。
  • copy and crop:复制和裁剪,将下采样模块输出的特征图进行复制和裁剪,方便和上采样生成的特征图进行拼接。

  在下采样操作中,模型已经得到了所有类的像素特征值。虽然使用最大池化操作时丢失了一些细节信息,但无需担心。在上采样中,模型通过将具有相同下采样滤波器的级别的特征图复制到相同的上采样过滤器级别来获得完整的图像,从而保留特征。因此,我们得到完整的图像,并可以定位每个类的图像中存在的位置,并且,再次通过应用卷积来学习全尺寸图像。所以在上采样时,下采样模块输出的每个特征图都被添加到上采样模块的相应特征层中,以获得全分辨率图像,从而实现类别的定位,这一过程也被称为跳跃连接。
  第一个上采样模块细节如下:
在这里插入图片描述
  最下面的下采样模块输出特征图大小为 ( 28 , 28 , 1024 ) (28,28,1024) (28,28,1024),经过反卷积操作(up-conv 2x2)得到大小为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)的特征图,即尺寸扩大一倍,通道数减半。之后,将左侧下采样模块输出的 ( 64 , 64 , 512 ) (64,64,512) (64,64,512)图像进行复制并中心裁剪(copy and crop)同样转化为 ( 56 , 56 , 512 ) (56,56,512) (56,56,512)大小,并与之拼接得到 ( 56 , 56 , 1024 ) (56,56,1024) (56,56,1024)大小的特征图(可见,此拼接仅是通道方向的拼接)。代码实现:

# 上采样中反卷积操作的实现
self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512

同理也可得到其他反卷积操作的实现:

self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256
self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128
self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64

  右半部分卷积操作的代码实现:
【第一次卷积】

        self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512self.relu6_1 = nn.ReLU(inplace=True)self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512self.relu6_2 = nn.ReLU(inplace=True)

【第二次卷积】

        self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256self.relu7_1 = nn.ReLU(inplace=True)self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256self.relu7_2 = nn.ReLU(inplace=True)

【第三次卷积】

        self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128self.relu8_1 = nn.ReLU(inplace=True)self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128self.relu8_2 = nn.ReLU(inplace=True)

【第四次卷积】

        self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64self.relu9_1 = nn.ReLU(inplace=True)self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64self.relu9_2 = nn.ReLU(inplace=True)

【第五次卷积】

        # 最后的conv1*1self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0) #64x388x388->2x388x388

  中心裁剪操作的实现:

    # 中心裁剪,def crop_tensor(self, tensor, target_tensor):target_size = target_tensor.size()[2]tensor_size = tensor.size()[2]delta = tensor_size - target_sizedelta = delta // 2# 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]

【第一次上采样+拼接】

        # 第一次上采样,需要"Copy and crop"(复制并裁剪)up1 = self.up_conv_1(x10)  # 得到56*56*512# 需要对x8进行裁剪,从中心往外裁剪crop1 = self.crop_tensor(x8, up1)# 拼接操作up_1 = torch.cat([crop1, up1], dim=1)

【第二次上采样+拼接】

		# 第二次上采样,需要"Copy and crop"(复制并裁剪)up2 = self.up_conv_2(y2)# 需要对x6进行裁剪,从中心往外裁剪crop2 = self.crop_tensor(x6, up2)# 拼接up_2 = torch.cat([crop2, up2], dim=1)

【第三次上采样+拼接】

        # 第三次上采样,需要"Copy and crop"(复制并裁剪)up3 = self.up_conv_3(y4)# 需要对x4进行裁剪,从中心往外裁剪crop3 = self.crop_tensor(x4, up3)up_3 = torch.cat([crop3, up3], dim=1)

【第四次上采样+拼接】

        # 第四次上采样,需要"Copy and crop"(复制并裁剪)up4 = self.up_conv_4(y6)# 需要对x2进行裁剪,从中心往外裁剪crop4 = self.crop_tensor(x2, up4)up_4 = torch.cat([crop4, up4], dim=1)

2.3完整代码

在这里插入图片描述

import torch
import torch.nn as nnclass Unet(nn.Module):def __init__(self):super(Unet, self).__init__()self.conv1_1 = nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=0)  # 由572*572*1变成了570*570*64self.relu1_1 = nn.ReLU(inplace=True)self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 由570*570*64变成了568*568*64self.relu1_2 = nn.ReLU(inplace=True)self.maxpool_1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样,图片大小减半,通道数不变,由568*568*64变成284*284*64self.conv2_1 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=0)  # 284*284*64->282*282*128self.relu2_1 = nn.ReLU(inplace=True)self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 282*282*128->280*280*128self.relu2_2 = nn.ReLU(inplace=True)self.maxpool_2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  280*280*128->140*140*128self.conv3_1 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=0)  # 140*140*128->138*138*256self.relu3_1 = nn.ReLU(inplace=True)self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 138*138*256->136*136*256self.relu3_2 = nn.ReLU(inplace=True)self.maxpool_3 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  136*136*256->68*68*256self.conv4_1 = nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=0)  # 68*68*256->66*66*512self.relu4_1 = nn.ReLU(inplace=True)self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 66*66*512->64*64*512self.relu4_2 = nn.ReLU(inplace=True)self.maxpool_4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 采用最大池化进行下采样  64*64*512->32*32*512self.conv5_1 = nn.Conv2d(in_channels=512, out_channels=1024, kernel_size=3, stride=1, padding=0)  # 32*32*512->30*30*1024self.relu5_1 = nn.ReLU(inplace=True)self.conv5_2 = nn.Conv2d(1024, 1024, kernel_size=3, stride=1, padding=0)  # 30*30*1024->28*28*1024self.relu5_2 = nn.ReLU(inplace=True)# 接下来实现上采样中的up-conv2*2self.up_conv_1 = nn.ConvTranspose2d(in_channels=1024, out_channels=512, kernel_size=2, stride=2, padding=0) # 28*28*1024->56*56*512self.conv6_1 = nn.Conv2d(in_channels=1024, out_channels=512, kernel_size=3, stride=1, padding=0)  # 56*56*1024->54*54*512self.relu6_1 = nn.ReLU(inplace=True)self.conv6_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=0)  # 54*54*512->52*52*512self.relu6_2 = nn.ReLU(inplace=True)self.up_conv_2 = nn.ConvTranspose2d(in_channels=512, out_channels=256, kernel_size=2, stride=2, padding=0) # 52*52*512->104*104*256self.conv7_1 = nn.Conv2d(in_channels=512, out_channels=256, kernel_size=3, stride=1, padding=0)  # 104*104*512->102*102*256self.relu7_1 = nn.ReLU(inplace=True)self.conv7_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=0)  # 102*102*256->100*100*256self.relu7_2 = nn.ReLU(inplace=True)self.up_conv_3 = nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, stride=2, padding=0) # 100*100*256->200*200*128self.conv8_1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=0)  # 200*200*256->198*198*128self.relu8_1 = nn.ReLU(inplace=True)self.conv8_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=0)  # 198*198*128->196*196*128self.relu8_2 = nn.ReLU(inplace=True)self.up_conv_4 = nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, stride=2, padding=0) # 196*196*128->392*392*64self.conv9_1 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=0)  # 392*392*128->390*390*64self.relu9_1 = nn.ReLU(inplace=True)self.conv9_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=0)  # 390*390*64->388*388*64self.relu9_2 = nn.ReLU(inplace=True)# 最后的conv1*1self.conv_10 = nn.Conv2d(in_channels=64, out_channels=2, kernel_size=1, stride=1, padding=0)# 中心裁剪,def crop_tensor(self, tensor, target_tensor):target_size = target_tensor.size()[2]tensor_size = tensor.size()[2]delta = tensor_size - target_sizedelta = delta // 2# 如果原始张量的尺寸为10,而delta为2,那么"delta:tensor_size - delta"将截取从索引2到索引8的部分,长度为6,以使得截取后的张量尺寸变为6。return tensor[:, :, delta:tensor_size - delta, delta:tensor_size - delta]def forward(self, x):x1 = self.conv1_1(x)x1 = self.relu1_1(x1)x2 = self.conv1_2(x1)x2 = self.relu1_2(x2)  # 这个后续需要使用down1 = self.maxpool_1(x2)x3 = self.conv2_1(down1)x3 = self.relu2_1(x3)x4 = self.conv2_2(x3)x4 = self.relu2_2(x4)  # 这个后续需要使用down2 = self.maxpool_2(x4)x5 = self.conv3_1(down2)x5 = self.relu3_1(x5)x6 = self.conv3_2(x5)x6 = self.relu3_2(x6)  # 这个后续需要使用down3 = self.maxpool_3(x6)x7 = self.conv4_1(down3)x7 = self.relu4_1(x7)x8 = self.conv4_2(x7)x8 = self.relu4_2(x8)  # 这个后续需要使用down4 = self.maxpool_4(x8)x9 = self.conv5_1(down4)x9 = self.relu5_1(x9)x10 = self.conv5_2(x9)x10 = self.relu5_2(x10)# 第一次上采样,需要"Copy and crop"(复制并裁剪)up1 = self.up_conv_1(x10)  # 得到56*56*512# 需要对x8进行裁剪,从中心往外裁剪crop1 = self.crop_tensor(x8, up1)up_1 = torch.cat([crop1, up1], dim=1)y1 = self.conv6_1(up_1)y1 = self.relu6_1(y1)y2 = self.conv6_2(y1)y2 = self.relu6_2(y2)# 第二次上采样,需要"Copy and crop"(复制并裁剪)up2 = self.up_conv_2(y2)# 需要对x6进行裁剪,从中心往外裁剪crop2 = self.crop_tensor(x6, up2)up_2 = torch.cat([crop2, up2], dim=1)y3 = self.conv7_1(up_2)y3 = self.relu7_1(y3)y4 = self.conv7_2(y3)y4 = self.relu7_2(y4)# 第三次上采样,需要"Copy and crop"(复制并裁剪)up3 = self.up_conv_3(y4)# 需要对x4进行裁剪,从中心往外裁剪crop3 = self.crop_tensor(x4, up3)up_3 = torch.cat([crop3, up3], dim=1)y5 = self.conv8_1(up_3)y5 = self.relu8_1(y5)y6 = self.conv8_2(y5)y6 = self.relu8_2(y6)# 第四次上采样,需要"Copy and crop"(复制并裁剪)up4 = self.up_conv_4(y6)# 需要对x2进行裁剪,从中心往外裁剪crop4 = self.crop_tensor(x2, up4)up_4 = torch.cat([crop4, up4], dim=1)y7 = self.conv9_1(up_4)y7 = self.relu9_1(y7)y8 = self.conv9_2(y7)y8 = self.relu9_2(y8)# 最后的conv1*1out = self.conv_10(y8)return out
if __name__ == '__main__':input_data = torch.randn([1, 1, 572, 572])unet = Unet()output = unet(input_data)print(output.shape)# torch.Size([1, 2, 388, 388])

三、实战案例

  准备复现论文:点击跳转
  准备复现项目:点击跳转

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432529.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【第十七章:Sentosa_DSML社区版-机器学习之异常检测】

【第十七章:Sentosa_DSML社区版-机器学习之异常检测】 机器学习异常检测是检测数据集中的异常数据的算子,一种高效的异常检测算法。它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根…

LVS-DR实战案例,实现四层负载均衡

环境准备:三台虚拟机(NET模式或者桥接模式) 192.168.88.200 (web1)(安装nginx服务器作为测试) 192.168.88.201 (服务器)(用于部署lvs-dr) 192.168.88.202 (web2)…

30 | 理论四:如何通过封装、抽象、模块化、中间层等解耦代码?

前面我们讲到,重构可以分为大规模高层重构(简称“大型重构”)和小规模低层次重构(简称“小型重构”)。大型重构是对系统、模块、代码结构、类之间关系等顶层代码设计进行的重构。对于大型重构来说,今天我们…

华为静态路由(route-static)

静态路由的组成 在华为路由器中,使用ip route-static命令配置静态路由。 一条静态路由主要包含以下要素: 目的地址:数据包要到达的目标IP地址 子网掩码:用于指定目的地址的网络部分和主机部分 下一跳地址(可选&#…

linux之mysql安装

1:mysql安装包下载 下载地址 可私信我直接获取安装包 2:linux下wget命令下载 下载地址 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7.24-linux-glibc2.12-x86_64.tar.gz3:手动安装 将自己的安装包上传到对应的位置 解压 压缩包 使用命令 tar -zxvf mysql-5.7…

Redis面试真题总结(四)

文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ AOF 持久化? AOF(Append Only File&#x…

ubuntu安装emqx

目录 1.预先下载好emqx压缩包 2.使用tar命令解压 3.进入bin目录 5.放开访问端口18083 6.从通过ip地址访问emqx后台 7.默认用户名密码为admin/public 8.登录后台 9.资源包绑定在此博文可自取 1.预先下载好emqx压缩包 2.使用tar命令解压 sudo tar -xzvf emqx-5.0.8-el8-…

精密单轴纵切自动车床

精密单轴纵切自动车床,作为现代机械加工领域的重要设备,以其高精度、高效率的特点,广泛应用于各种精密零件的加工制造中。下面,我将从几个方面来详细解析这种车床的特点和应用。 ‌一、定义与特点‌ ‌精密单轴纵切自动车床‌&…

[笔记]2024大厂变频器,电机参数一览

注意中心高,在用铁心规格,功率换算表 温升曲线在预防性维护过程能用到 注意各类电流参数,上面双极对,下面3极对。 另一种极对数 4极对的电机参数可参考,不常用。 emc滤波, Sto,通讯接口 颜色区分的接口设计 一组新强…

灵当CRM index.php接口SQL注入漏洞复现 [附POC]

文章目录 灵当CRM index.php接口SQL注入漏洞复现 [附POC]0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.构造POC3.复现 0x06 修复建议 灵当CRM index.php接口SQL注入漏洞复现 [附POC] 0x01 前言 免责声明:请勿利用文章内的相关技…

1.1.4 计算机网络的分类

按分布范围分类: 广域网(wan) 城域网(man) 局域网(lan) 个域网(pan) 注意:如今局域网几乎采用“以太网技术实现”,因此“以太网”几乎成了“局域…

实景三维夯实数字乡村孪生底座

随着数字乡村建设的不断推进,实景三维技术在乡村规划、管理、服务等方面发挥着越来越重要的作用。本文将探讨实景三维技术如何夯实数字乡村的孪生底座,为乡村的可持续发展提供强有力的支撑。 一、数字乡村建设的背景 数字乡村建设是推动乡村全面振兴、…

C# winforms DataGridView设置数据源自动显示表格

初级代码游戏的专栏介绍与文章目录-CSDN博客 我的github:codetoys,所有代码都将会位于ctfc库中。已经放入库中我会指出在库中的位置。 这些代码大部分以Linux为目标但部分代码是纯C的,可以在任何平台上使用。 源码指引:github源…

Google Earth Engine(GEE)——全球土地覆盖10米的更精细分辨率观测和监测数据集(FROM-GLC10)

前言 – 床长人工智能教程 全球土地覆盖10米的更精细分辨率观测和监测(FROM-GLC10) 这项工作和论文的目的是对2017年用不同卫星上的传感器获取的10米分辨率图像进行分类。我们通过10米分辨率的地图FROM-GLC10进行检查,并与我们2017年30米全球…

深度学习与应用:行人跟踪

**实验 深度学习与应用:行人跟踪 ** ------ **1、 实验目的** ------ - 了解行人跟踪模型基础处理流程 - 熟悉行人跟踪模型的基本原理 - 掌握 行人跟踪模型的参数微调训练以及推理的能力 - 掌握行人跟踪模型对实际问题的应用能力,了解如何在特定的场景和…

HTML中的表单(超详细)

一、表单 1.语法 <!-- action&#xff1a;提交的地方 method&#xff1a;提交的方式&#xff08;get会显示&#xff0c;post不会&#xff09; --> <form action"#" method"get"><p>名字&#xff1a;<input name"name" ty…

大规模数据处理:分库分表与数据迁移最佳实践

什么是分库分表 分库分表是一种数据库架构优化策略&#xff0c;它将数据分散存储在多个数据库或表中&#xff0c;以此来提高系统的可扩展性和性能。 虽然分库分表能够提升系统的整体性能&#xff0c;但是也不要一上来就分库分表&#xff0c;如果系统在单表的情况下&#xff0…

Vue3使用vue-quill富文本编辑器

安装依赖 npm install vueup/vue-quill quill quill-image-uploader自定义字体 把自定义字体样式放入font.css中在main.js中导入 .ql-snow .ql-picker.ql-font .ql-picker-label[data-valueSimSun]::before, .ql-snow .ql-picker.ql-font .ql-picker-item[data-valueSimSun]…

VS Code使用Git Bash终端

Git Bash可以运行linux命令&#xff0c;在VS Code的终端界面&#xff0c;找到号旁边的箭头&#xff0c;就能直接切换了 当然&#xff0c;前提是安装了Git Bash&#xff0c;并且在资源管理器里&#xff0c;能鼠标右键出"Git Bash Here"

微信getUserProfile不弹出授权框

当我们在微信小程序开发工具中想要使用getUserProfile来获取个人信息的时候&#xff0c;会发现不弹出授权框&#xff0c;这是什么原因呢&#xff1f; 早在2022年的小程序官方公告中就已经明确给出了小程序用户头像昵称获取规则调整公告 因此如果还想继续使用getUserProfile的弹…