opencv实战项目二十七:基于meanshif的视频脸部跟踪

文章目录

  • 前言
  • 一、Mean Shift是什么?
  • 二、opencv中meanshift使用流程
  • 三、使用代码:
  • 四、效果:


前言

在当今这个信息化时代,图像和视频处理技术已经渗透到我们生活的方方面面,从安防监控、智能交通到人机交互等领域,都离不开目标跟踪技术的应用。作为计算机视觉领域的一个重要分支,目标跟踪技术一直以来都是研究的热点。而在众多的目标跟踪算法中,基于OpenCV的Mean Shift算法以其简洁、高效的特点受到了广泛的关注。本文将带你走进基于OpenCV的Mean Shift跟踪算法的世界,深入剖析其原理,并通过实战案例,教你如何使用OpenCV库实现一个简单而实用的人脸跟踪系统。


一、Mean Shift是什么?

Mean Shift算法是一种有效的迭代方法,用于寻找数据集中点的密集区域,它在模式识别和图像处理等领域有着广泛的应用,尤其是在目标跟踪和图像分割任务中。Mean Shift算法的核心思想是通过迭代方式更新候选点的位置,直到收敛到数据的高密度区域。这个过程可以概括为以下几个步骤:

1.初始化:选择一个或多个种子点(通常是目标点的初始估计)。
2.计算偏移量:在每个迭代步骤中,计算当前种子点周围的点的加权平均位置(即均值),这个加权平均位置与当前种子点的差值称为偏移量。
3.更新位置:将种子点更新为加权平均位置。
4.重复迭代:重复上述步骤,直到偏移量小于一个预设的阈值,表明种子点已经收敛到数据的一个密度峰值。

可以简化理解:即假设你有一组点。(它可以是像直方图反向投影这样的像素分布)。你有一个小窗口(可能是一个圆圈),你必须将该窗口移动到最大像素密度(或最大点数)的区域。如下图所示:在这里插入图片描述
初始窗口以蓝色圆圈显示,名称为“C1”。它的原始中心被标记为蓝色矩形,命名为“C1_o”。但是如果你找到窗口内点的质心,你会得到点“C1_r”(用蓝色小圆圈标记),这是窗口的真正质心。它们肯定不匹配。所以移动你的窗口,使新窗口的圆与之前的质心匹配。再次找到新的质心。最有可能的是,它不会匹配。因此,再次移动它,并继续迭代,使窗口的中心和它的质心落在同一位置(或在一个小的期望误差)。最后你得到的是一个具有最大像素分布的窗口。它有一个绿色的圆圈,命名为“C2”。正如你在图片中看到的,它有最大数量的点。
因此,通常传递直方图反投影图像和初始目标位置。当物体运动时,这种运动明显地反映在直方图反投影图像中。因此,meanshift算法将我们的窗口移动到具有最大密度的新位置。

二、opencv中meanshift使用流程

在opencv中支持meanshift算法的使用其api为cv2.meanShift,在 OpenCV 中使用 cv2.meanShift 函数需要以下步骤:

  1. 初始化目标区域:首先,需要指定一个初始的目标区域(通常是一个矩形框),这可以通过手动选择或使用其他方法(如物体检测算法)来实现。
  2. 计算直方图反向投影:为了跟踪目标,需要计算目标的颜色直方图,并将其反向投影到整个图像上。这有助于突出显示与目标颜色匹配的区域。
  3. 调用 cv2.meanShift使用反向投影图像和初始目标窗口调用 cv2.meanShift 函数,它会返回新的目标位置。

第二步直方图反向投影使用的方法为cv2.calcBackProject,反向投影技术是一种基于色彩统计的目标检测方法。它将每个像素点的颜色与目标物体的颜色直方图进行比较,并创建一个新的图像,该图像的每个像素值表示该像素颜色与目标颜色匹配的概率。这个概率图像可以用于后续的目标跟踪或分割。
其函数为dst = cv2.calcBackProject(images, channels, hist, ranges, scale)
参数介绍:

images:一个或多个源图像的列表,通常是单通道图像。
channels:需要计算反向投影的图像通道的索引列表。
hist:目标颜色直方图,通常是通过 cv2.calcHist 函数计算得到的。
ranges:每个直方图通道的值范围,通常是 [0, 256]。
scale:可选参数,用于缩放返回的反向投影值,默认为 1。

在计算好反向投影之后,调用cv2.meanShift算法寻找新的矩形框,retval, target = cv2.meanShift(probImage, window, criteria):
输入参数:

probImage:反向投影图像,通常是通过 cv2.calcBackProject 函数生成的。
window:初始搜索窗口,通常是一个矩形区域 (x, y, width, height),表示目标的初始位置和大小。
criteria:停止迭代的标准,通常是一个包含三个元素的元组 (type, max_iter, epsilon),其中:
type:确定用于停止迭代的准则类型,通常是 cv2.TERM_CRITERIA_EPS 或 cv2.TERM_CRITERIA_MAX_ITER。
max_iter:最大迭代次数。
epsilon:所需的精度或阈值,当窗口移动小于这个值时,迭代停止。

返回值:

retval:迭代过程中的迭代次数。
target:目标的最终位置,即更新后的窗口位置 (x, y, width, height)。

三、使用代码:

import cv2
import numpy as np# 视频文件路径
video_path = 'D:\input_video.mp4'# 设置初始化的窗口位置
r, h, c, w = 100, 400, 200, 300  # 设置初试窗口位置和大小
track_window = (c, r, w, h)# 初始化视频读取
cap = cv2.VideoCapture(video_path)# 读取第一帧
ret, frame = cap.read()# 设置追踪的区域
roi = frame[r:r + h, c:c + w]
# roi区域的hsv图像
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
# 取值hsv值在(0,60,32)到(180,255,255)之间的部分
mask = cv2.inRange(hsv_roi, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
# 计算直方图,参数为 图片(可多),通道数,蒙板区域,直方图长度,范围
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0, 180])
# 归一化
cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)# 设置终止条件,迭代10次或者至少移动1次
term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)while ret:ret, frame = cap.read()if ret == True:frame = cv2.flip(frame, 1)# 计算每一帧的hsv图像hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)# 计算反向投影dst = cv2.calcBackProject([hsv], [0], roi_hist, [0, 180], 1)# 调用meanShift算法在dst中寻找目标窗口,找到后返回目标窗口ret, track_window = cv2.meanShift(dst, track_window, term_crit)# 在图像上绘制它x, y, w, h = track_windowimg2 = cv2.rectangle(frame, (x, y), (x + w, y + h), 255, 2)cv2.imshow('img2', img2)if cv2.waitKey(0) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()

四、效果:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432841.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何恢复被删除的 GitLab 项目?

GitLab 是一个全球知名的一体化 DevOps 平台,很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab 是 GitLab 在中国的发行版,专门为中国程序员服务。可以一键式部署极狐GitLab。 学习极狐GitLab 的相关资料: 极狐GitLab 官网极狐…

MYSQL求月份同比数据和环比数据

1.需求题目如下 1.首先求出每月每个account_id 对应的amount金额 2.利用表自关联,获取上月,上年对应月份及金额, 关联条件利用 主表月份-1个月上月月份 和 主表月份-1年上年月份 3.最后求同比和环比 附代码及测试数据 CREATE TABLE transa…

Go基础学习06-Golang标准库container/list(双向链表)深入讲解;延迟初始化技术;Element;List;Ring

基础介绍 单向链表中的每个节点包含数据和指向下一个节点的指针。其特点是每个节点只知道下一个节点的位置,使得数据只能单向遍历。 示意图如下: 双向链表中的每个节点都包含指向前一个节点和后一个节点的指针。这使得在双向链表中可以从前向后或从后…

皮肤病检测-目标检测数据集(包括VOC格式、YOLO格式)

皮肤病检测-目标检测数据集(包括VOC格式、YOLO格式 数据集: 链接:https://pan.baidu.com/s/1XNTo-HsBCHJp2UA-dpn5Og?pwdlizo 提取码:lizo 数据集信息介绍: 共有 2025 张图像和一一对应的标注文件 标注文件格式提供…

说说海外云手机的自动化功能

在全球社交媒体营销中,通过自动化功能,企业不再需要耗费大量时间和精力手动监控和操作每台设备。这意味着,企业可以显著提升效率、节省成本,同时减少对人力资源的依赖。那么,海外云手机的自动化功能具体能带来哪些优势…

Eclipse Memory Analyzer (MAT)提示No java virtual machine was found ...解决办法

1,下载mat后安装,打开时提示 jdk版本低,需要升级到jdk17及以上版本,无奈就下载了jdk17,结果安装后提示没有jre环境,然后手动生成jre目录,命令如下: 进入jdk17目录:执行&…

基于Springboot+微信小程序 的高校社团管理小程序(含源码+数据库+lw)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统定…

使用Postman搞定各种接口token实战

现在许多项目都使用jwt来实现用户登录和数据权限,校验过用户的用户名和密码后,会向用户响应一段经过加密的token,在这段token中可能储存了数据权限等,在后期的访问中,需要携带这段token,后台解析这段token才…

视频单目标跟踪研究

由于对视频单目标跟踪并不是很熟悉,所以首先得对该领域有个大致的了解。 视频目标跟踪是计算机视觉领域重要的基础性研究问题之一,是指在视频序列第一帧指定目标 后,在后续帧持续跟踪目标,即利用边界框(通常用矩形框表…

解决sortablejs+el-table表格内限制回撤和拖拽回撤失败问题

应用场景: table内同一类型可拖拽,不支持不同类型拖拽(主演可拖拽交换位置,非主演和主演不可交换位置),类型不同拖拽效果需还原,试了好几次el-table数据更新了,但是表格样式和数据不能及时保持…

ArrayList源码实现(一)

ArrayList源码实现(一) 1. ArrayList的大小是如何自动增加的? 初始化 在构造函数中,可以设定列表的初始值大小,如果没有的话默认使用,提供的静态数据 public ArrayList(int initialCapacity) {if (initi…

RabbitMQ应用

RabbitMQ 共提供了7种⼯作模式, 进⾏消息传递 一、七种模式的概述 1、Simple(简单模式) P:生产者,就是发送消息的程序 C:消费者,就是接收消息的程序 Queue:消息队列,类似⼀个邮箱, 可以缓存消息; ⽣产者…

UniApp基于xe-upload实现文件上传组件

xe-upload地址:文件选择、文件上传组件(图片,视频,文件等) - DCloud 插件市场 致敬开发者!!! 感觉好用的话,给xe-upload的作者一个好评 背景:开发中经常会有…

几个可以给pdf加密的方法,pdf加密详细教程。

几个可以给pdf加密的方法,pdf加密详细教程。在信息快速传播的今天,PDF文件已经成为重要的文档格式,被广泛应用于工作、学习和个人事务中。然而,随着数字内容的增加,数据安全和隐私保护的问题愈发凸显。无论是商业机密、…

CAT1 RTU软硬件设计开源资料分析(TCP协议+Modbus协议+GNSS定位版本 )

01 CAT1 RTU方案简介: 远程终端单元( Remote Terminal Unit,RTU),一种针对通信距离较长和工业现场环境恶劣而设计的具有模块化结构的、特殊的计算机测控单元,它将末端检测仪表和执行机构与远程控制中心相连接。 奇迹TCP RTUGNS…

OpenHarmony(鸿蒙南向)——平台驱动指南【PWM】

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 概述 功能简介 PWM即脉冲宽度调制(Pulse Width Modul…

Flutter中使用FFI的方式链接C/C++的so库(harmonyos)

Flutter中使用FFI的方式链接C/C库(harmonyos) FFI plugin创建和so的配置FFI插件对so库的使用 FFI plugin创建和so的配置 首先我们可以根据下面的链接生成FFI plugin插件:开发FFI plugin插件 然后在主项目中pubspec.yaml 添加插件的依赖路径&…

排序--堆排序【图文详解】

二叉树的相关概念 叶子:没有子节点的节点叫叶子节点 大根堆:所有的父亲大于儿子 小根堆:所有的儿子大于父亲 父亲于儿子的的下标关系: 父亲的下标为i ,那么左孩子的下标为2*i1,右孩子的下标为2i2 子的下…

智源研究院与百度达成战略合作 共建AI产研协同生态

2024年9月24日,北京智源人工智能研究院(简称“智源研究院”)与北京百度网讯科技有限公司(简称“百度”)正式签署战略合作协议,双方将充分发挥互补优势,在大模型等领域展开深度合作,共…

tomcat服务搭建部署ujcms网站

tomcat服务搭建部署ujcms网站 关闭selinux和防火墙 setenforce 0 && systemctl stop firewalld安装java环境 #卸载原有java8环境 yum remove java*#上传java软件包,并解压缩 tar -xf openjdk-11.0.1_linux-x64_bin.tar.gz && mv jdk-11.0.1 jdk11…