机器人顶刊IEEE T-RO发布无人机动态环境高效表征成果:基于粒子的动态环境连续占有地图

摘要:本研究有效提高了动态环境中障碍物建模的精度和效率。NOKOV度量动作捕捉系统助力评估动态占用地图在速度估计方面的性能。

近日,上海交通大学、荷兰代尔夫特理工研究团队在机器人顶刊IEEE T-RO上发表题为Continuous Occupancy Mapping in Dynamic Environments Using Particles 的论文,第一作者为荷兰代尔夫特理工大学认知机器人系博士后陈刚。

本文提出了一种基于粒子的连续占用地图,通过创新的双数据结构和高效的地图构建流程,有效提高了动态环境中障碍物建模的精度和效率。NOKOV度量动作捕捉系统收集动态障碍物运动数据,助力评估动态占用地图在速度估计方面的性能。

引用格式
G.Chen, W. Dong, P. Peng, J. Alonso-Mora and X. Zhu, “Continuous Occupancy Mapping in Dynamic Environments Using Particles,” in IEEE Transactions on Robotics, vol. 40, pp. 64-84, 2024, doi: 10.1109/TRO.2023.3323841.

研究背景
本文针对动态环境的表征问题进行研究,特别是机器人导航过程中如何安全有效进行路径规划。传统的基于粒子的地图在描述占用状态时存在网格大小的矛盾:大网格不利于运动规划,小网格则降低效率并可能产生间隙和不一致性。此外,现有的粒子地图依赖于测量栅格地图作为输入,这种栅格化的数据输入限制了状态估计的精度,并且存在栅格尺寸问题。为了解决这些问题,本文提出了一种连续的双结构粒子地图(DSP Map),旨在提高动态环境中障碍物建模的精度和效率,同时支持小型机器人平台的使用。
图1 带有行人的动态环境构图结果示意图

图1 带有行人的动态环境构图结果示意图

本文贡献
1提出了一个基于双数据结构构建的粒子地图更新模式,从而将粒子地图推广到了连续空间;
2采用初始速度估计和一个高效的混合运动模型来减少同时表征动静态障碍物时的噪声;
3开发了一套完整的、高效的地图构建流程,使得 DSP Map 可用于微小型机器人平台;
4地图相关代码已开源至:https://github.com/g-ch/DSP-map
图2 双数据结构示意图

实验过程
本文首先评估了 DSP Map 的构建效率和对动态障碍物速度估计的效果,然后与当前最先进的基于粒子的动态占有地图 K3DOM 和一个应用广泛的经典静态占有地图 Ewok Map展开对比实验,结果表明 DSP Map 在动态环境中具有最高的 F-1 Score,在静态环境也有与 Ewok Map 接近的性能。同时,本文基于 DSP Map 在一个微型无人机上开展了避障实验。
在这里插入图片描述
NOKOV度量动作捕捉系统在实验中记录行人在测试场地内的运动轨迹,并提供精确的速度和位置数据作为地面真实值(ground truth),比较了DSP地图和其他点云处理方法在动态环境中对障碍物运动状态估计的性能。

作者介绍
Author Profile

董伟
上海交通大学机械与动力工程学院 长聘副教授

研究方向
多机器人协同智能与主动感知

主要成就
· 成功主持多个国家自然科学基金项目、上海青年科技启明星计划项目、中国博士后科学基金研究特别资助项目等
· 围绕无人系统低负荷协同感知与控制,在IEEE T-RO,IEEE RA-L,IEEE T-ASE,IEEE/ASME T-MECH等机器人与自动化主流期刊上共发表SCI期刊论文三十余篇。代表性成果为宽场景适应的主动感知规划系统。
· 获得上海交通大学的教学成果奖和多项个人荣誉。作为指导教师,带领学生在多个无人飞行器智能感知技术竞赛中获得一等奖。

Javier Alonso-Mora
代尔夫特理工大学认知机器人系 副教授

研究方向
多机器人协同、决策规划

主要成就
· IEEE RAS 多机器人系统技术委员会联合主席、T-RO & Autonomous Robots副主编、RSS 2024 Local Arrangements Chair、ERC 启动基金的获得者
· 曾获得 ICRA 2019 多机器人系统最佳论文奖及IEEE MRS 2024 最佳论文奖提名
2024年9月11日19:00,上海交大董伟老师 及 代尔夫特理工Javier Alonso-Mora老师开启了《STAR TALK | 多决策智能体中的路径规划》学术交流直播!两位教授隔空对话,围绕“分布式多无人系统与人机混合系统中行为模型的异同”、“个体机器人认知与决策方式对群体行为演化的影响”、“应急游戏相较于模型预测控制的异同与优势”、“通用场景中的多无人系统规划的可靠性测性方法”、“多无人系统行为推演下的规划时效问题”等话题展开讨论。欢迎观看直播回放!

直播回放

多决策智能体的运动规划——上海交大董伟老师与荷兰代尔夫特理工Javier老师深度讨论

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432977.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C语言】手把手带你拿捏指针(完)(指针笔试、面试题解析)

文章目录 一、sizeof和strlen的对⽐1.sizeof2.strlen3.sizeof与strlen对比 二、数组和指针笔试解析1.一维数组2.字符、字符串数组和字符指针代码1代码2代码3代码4代码5代码6 3.二维数组4.总结 三、指针运算笔试题解析代码1代码2代码3代码4代码5代码6 一、sizeof和strlen的对⽐ …

线性跟踪微分器TD详细测试(Simulink 算法框图+CODESYS ST+博途SCL完整源代码)

1、ADRC线性跟踪微分器 ADRC线性跟踪微分器(ST+SCL语言)_adrc算法在博途编程中scl语言-CSDN博客文章浏览阅读784次。本文介绍了ADRC线性跟踪微分器的算法和源代码,包括在SMART PLC和H5U平台上的实现。文章提供了ST和SCL语言的详细代码,并讨论了跟踪微分器在自动控制中的作用…

排序--希尔排序

希尔排序介绍 希尔排序核心思想就是:1,分组;2,直接插入排序:越有序越快 希尔排序就是多次利用直接插入排序的一个排序算法. 希尔排序的算法思想:间隔式分组,利用直接插入排序让组内有序,然后缩小分组再次排序,直到组数为1希尔排序的理论基础就是直接插入排序越有序越快; 希尔排…

Redis-----通用命令(keys, exists, del, expire, ttl, type)

通用命令 一. 前言.1.1 通用命令1.2 Redis常用的数据类型1.2.1 String(字符串)1.2.2 List(列表)1.2.3 Set(集合)1.2.4 Hash(哈希)1.2.5 Zset(有序集合) 二. 通…

通过 OpenAI API 实测 o1 模型(附源码)

9.11 与 9.9 哪个大? 还记得之前给大家演示的幻觉问题么? 用 gpt4 系列模型提问“9.11 与 9.9 哪个大?” 大家可以回顾一下,即使引导了 COT 的思路,但是 gpt4 还是一本正经的胡说八道。 如今,o1 已经完美解决数学、逻辑推理方…

探索 Snowflake 与 Databend 的云原生数仓技术与应用实践 | Data Infra NO.21 回顾

上周六,第二十一期「Data Infra 研究社」在线上与大家相见。活动邀请到了西门子数据分析师陈砚林与 Databend 联合创始人王吟,为我们带来了一场关于 Snowflake 和 Databend 的技术探索。Snowflake,这个市值曾超过 700 亿美元的云原生数据仓库…

《概率论与数理统计》学渣笔记

文章目录 1 随机事件和概率1.1 古典概型求概率随机分配问题简单随机抽样问题 1.2 几何概型求概率1.3 重要公式求概率 2 一维随机变量及其分布2.1 随机变量及其分布函数的定义离散型随机变量及其概率分布(概率分布)连续型随机变量及其概率分布&#xff08…

数据结构和算法之树形结构(4)

文章出处:数据结构和算法之树形结构(4) 关注码农爱刷题,看更多技术文章!!! 六、红黑树(接前篇) 红黑树是为了弥补AVL树在大规模频繁增删节点场景下性能不理想而设计出来的一种平衡二叉查找树。红黑树不是一种严…

【论文阅读】Diffusion Policy: Visuomotor Policy Learning via Action Diffusion

Abstract 本文介绍了扩散策略,这是一种通过将机器人的视觉运动policy表示为条件去噪扩散过程来生成机器人行为的新方法。我们对来自 4 个不同的机器人操作基准的 15 个不同任务的扩散策略进行了基准测试,发现它始终优于现有的 state-of-the-art 机器人学…

word批量裁剪图片,并调整图片大小,不锁定纵横比

在word中有若干图片待处理,裁剪出指定内容,调整成指定大小。如下是待处理的图片: 这时,选择视图,选择宏,查看宏 选择创建宏 添加cut_picture代码如下,其中上、下、左、右裁剪的橡塑尺寸根据自己…

C#入门教程

目录 1.if分支语句 2.面向对象 3.static简单说明 1.if分支语句 我们的这个C#里面的if语句以及这个if-else语句和C语言里面没有区别,就是打这个输出上面的方式不一样,c#里面使用的是这个console.writeline这个指令,其他的这个判断逻辑都是一…

【优选算法】(第四篇)

目录 三数之和(medium) 题目解析 讲解算法原理 编写代码 四数之和(medium) 题目解析 讲解算法原理 编写代码 三数之和(medium) 题目解析 1.题目链接:. - 力扣(LeetCode&…

鸿蒙开发(NEXT/API 12)【基础功能(使用剪贴板进行复制粘贴)】剪贴板服务

场景介绍 [剪贴板]为开发者提供数据的复制粘贴能力。 当需要使用复制粘贴等功能时&#xff0c;例如&#xff1a;复制文字内容到备忘录中粘贴&#xff0c;复制图库照片到文件管理粘贴&#xff0c;就可以通过剪贴板来完成。 约束限制 剪贴板内容大小<128MB。为保证剪贴板数…

【Java】Java中String、StringBuilder、StringJoiner详解

目录 引言 一、String 1.1 String的定义 1.1.1 直接赋值 1.1.2 new关键字创建 1.2 常用方法 1.3 字符串的不可变性 1.4 字符串内存的存储原理 二、StringBuilder 2.1 常用方法 2.2 动态扩容策略 2.3 使用场景 三、StringJoiner 3.1 构造方法 3.2 常用方法 3.3…

【图像处理】多幅不同焦距的同一个物体的平面图象,合成一幅具有立体效果的单幅图像原理(二)

实现多幅不同焦距图像合成一幅具有立体效果的图像可以使用以下算法和开源库&#xff1a; 实现算法 图像对齐 使用特征点匹配&#xff08;如 SIFT、SURF 或 ORB&#xff09;来对齐图像。利用 RANSAC 算法剔除离群点&#xff0c;估计变换矩阵。 深度图生成 基于图像的焦距和视角…

信息安全工程师(19)HASH函数与数字签名

一、Hash函数 1、定义 Hash函数&#xff0c;又称散列函数或哈希函数&#xff0c;是一种将任意长度的输入&#xff08;称为预映射或消息&#xff09;通过散列算法变换成固定长度输出&#xff08;称为散列值或哈希值&#xff09;的函数。这种转换是单向的&#xff0c;即不能从哈…

使用python爬取豆瓣网站?如何简单的爬取豆瓣网站?

1.对python爬虫的看法 首先说说我对python的看法&#xff0c;我的专业是大数据&#xff0c;我从事的工作是java开发&#xff0c;但是在工作之余&#xff0c;我对python又很感兴趣&#xff0c;因为我觉得python是一门很好的语言&#xff0c;第一&#xff1a;它可以用来爬取数据…

ROS与无人驾驶学习笔记(一)——ROS基本操作

文章目录 ※ 安装ubuntu 下载 创建虚拟机 安装系统 安装vmware tool 更新源 安装常用软件 ※ 安装ROS 设置软件更新 使用清华源安装 ros测试 认识ROS ROS特点 ROS系统实现 ROS安装 工作需要&#xff0c;转行做码农了。。。 大概是无人驾驶相关的&#xff0c;啥都不会。。。 看成…

arthas简单应用

背景说明 项目上某个接口响应时间过长&#xff0c;需要查看方法耗时情况进行优化 安装配置 访问下载页进行下载&#xff1a;下载 | arthas 调整文件位置进行解压缩 - 查看arthas帮助命令&#xff08;非必须&#xff0c;官网文档更详细&#xff09; C:\tools\arthas\4.0.1\b…

IvorySQL 3.4 来了

9 月 26 日&#xff0c;IvorySQL 3.4 发版。本文将带大家快速了解新版本特性。 IvorySQL 3.4 发版说明 IvorySQL 3.4 基于 PostgreSQL 16.4&#xff0c;修复了多个问题&#xff0c;并增强多项功能。 PostgreSQL 16.4 的变更 在未经授权时防止 pg_dump 执行&#xff0c;并引入一…