运维转型大模型:全面指南与实战总结

运维心里苦谁做谁知道,有时候感觉自己像一个杂工,在公司都快变成一个修电脑的了,不装了我转行了,给大家分享一点经验,希望能帮助到你们。

运维工程师转行至大模型领域需要学习一系列新的技能和知识。以下是一个详细的转行攻略,帮助您从运维工程师转向大模型领域:

了解基础知识:
数学基础:学习线性代数、概率论、统计学和微积分等基本数学知识,这些是大模型领域的基础。
编程语言:如果您已经熟悉Python,这是一个好的开始。Python是机器学习和数据科学领域中广泛使用的编程语言。

学习机器学习理论:
机器学习基础:了解机器学习的基本概念,包括监督学习、非监督学习、强化学习等。
深度学习:深入学习神经网络的基本结构,如卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。

掌握数据处理技能:
数据清洗和预处理:学习如何处理和清洗数据,以便为大模型准备高质量的输入数据。
数据分析和可视化:学习使用工具(如Pandas、NumPy、Matplotlib)进行数据分析和可视化。

实践项目经验:
在线课程和项目:参加在线课程,如Coursera、edX、Udacity上的机器学习和深度学习课程,并完成相关项目。
开源贡献:参与开源项目,为现有的机器学习模型或工具贡献代码。

学习框架和工具:
TensorFlow和PyTorch:学习这两个最流行的深度学习框架之一,通过实践来掌握它们的使用。
模型部署:了解如何将模型部署到生产环境,学习使用Flask或Django等Web框架。
专业领域深入:
自然语言处理(NLP):如果对处理文本数据感兴趣,深入学习NLP,了解词嵌入、序列模型、Transformer模型等。

计算机视觉:如果对图像和视频处理感兴趣,学习计算机视觉的基础知识,如图像识别、目标检测等。

建立个人项目:
创建个人作品集:开发一些个人项目,如构建一个简单的推荐系统、情感分析工具或图像识别应用,并将它们添加到您的GitHub仓库中。

参与社区和会议:
加入AI社区:参与线上论坛、社交媒体群组和本地Meetup,与其他机器学习爱好者交流。
参加会议和研讨会:参加机器学习和AI相关的会议和研讨会,以了解最新的研究和发展趋势。

考虑进修教育:
研究生学位:如果您希望更深入地学习,可以考虑攻读计算机科学或数据科学的研究生学位。
专业证书:获得相关的专业证书,如谷歌的机器学习工程师证书。

职业规划:
职业转型:在您的简历中强调新的技能和项目经验,开始申请与大模型相关的工作或实习机会。
持续学习:大模型和AI领域不断进步,持续学习新技术和算法对于保持竞争力至关重要。

通过以上步骤,您可以从运维工程师成功转型为大模型领域的专业人士。记住,这个过程需要时间和努力,但随着您的技能和知识的增长,您将能够在这个新兴且充满机遇的领域中取得成功。

在这里插入图片描述

大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

在这里插入图片描述

在这里插入图片描述

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。
在这里插入图片描述

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/434346.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【算法】JAVA刷算法必备数据结构

文章目录 数组List队列和栈栈的应用:表达式求值 数组List ArrayList 类是一个可以动态修改的数组,与普通数组的区别就是它是没有固定大小的限制,我们可以添加或删除元素。 ArrayList 继承了 AbstractList ,并实现了 List 接口。 …

Nest.js实现一个简单的聊天室

本文将介绍如何使用 Nest.js 和 Uni-app 实现一个简单的实时聊天应用。后端使用 nestjs/websockets 和 socket.io,前端使用 uni-app 并集成 socket.io-client。这个项目允许多个用户同时加入聊天并实时交换消息。 效果图: 一、准备工作 安装 Node.js 和…

DAF-Net:一种基于域自适应的双分支特征分解融合网络用于红外和可见光图像融合

论文 DAF-Net: A Dual-Branch Feature Decomposition Fusion Network with Domain Adaptive for Infrared and Visible Image Fusion 提出了一种新的红外和可见光图像融合方法。该方法旨在结合红外图像和可见光图像的互补信息,以提供更全面的场景理解。红外图像在低…

学习C++的第七天!

1.虚函数是在基类中用 virtual 关键字声明的函数,可以在派生类中被重写。纯虚函数是在虚函数的基础上,在基类中被初始化为 0 的函数,含有纯虚函数的类是抽象类,不能被实例化。 2.如果基类的析构函数不是虚函数,当通过…

现代cpp多线程与并发初探

个人博客:Sekyoro的博客小屋 个人网站:Proanimer的个人网站 在现代c(c20)中,有了jthread和协程的概念,使得我们编写并发程序更加方便. 这里作简单学习. 前言知识 多线程编程 std::thread 用于创建一个执行的线程实例,所以它是一切并发编程的基础,使用时需要包含 <thread…

Android个性名片界面的设计——约束布局的应用

节选自《Android应用开发项目式教程》&#xff0c;机械工业出版社&#xff0c;2024年7月出版 做最简单的安卓入门教程&#xff0c;手把手视频、代码、答疑全配齐 【任务目标】 使用约束布局、TextView控件实现一个个性名片界面的设计&#xff0c;界面如图1所示。 图1 个性名片…

Transformer 算法模型详解

核心点&#xff1a;完整讲解Transformer模型&#xff01; 让我们用简单的语言来解释&#xff1a;想象一下&#xff0c;你正在阅读一本书&#xff0c;书中的每个字都很重要。但如果你每次只能关注一个字&#xff0c;理解整本书就会变得很慢。而Transformer模型就像是赋予你超能…

从密码学看盲拍合约:智能合约的隐私与安全新革命!

文章目录 前言一、什么是盲拍合约&#xff1f;二、盲拍合约的优势1.时间压力的缓解2.绑定与秘密的挑战 三、盲拍合约的工作原理1.提交盲出价2.披露出价3.结束拍卖4.退款机制 四、代码示例总结 前言 随着区块链技术的发展&#xff0c;智能合约在各种场景中的应用越来越广泛。盲…

基于Hive和Hadoop的病例分析系统

本项目是一个基于大数据技术的医疗病历分析系统&#xff0c;旨在为用户提供全面的病历信息和深入的医疗数据分析。系统采用 Hadoop 平台进行大规模数据存储和处理&#xff0c;利用 MapReduce 进行数据分析和处理&#xff0c;通过 Sqoop 实现数据的导入导出&#xff0c;以 Spark…

Linux入门2——初识Linux权限

目录 0. Linux下的用户 1.文件访问者的分类 2.文件类型和访问权限 3. 文件权限值的表示方法 4.文件访问权限的相关设置方法 4.1 修改文件的访问权限 4.2修改文件的拥有者和所属组 0. Linux下的用户 在学习Linux权限之前&#xff0c;我们要先来了解Linux下的用户&#x…

vue+UEditor附件上传问题

&#x1f3c6;本文收录于《全栈Bug调优(实战版)》专栏&#xff0c;主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&am…

端口隔离配置的实验

端口隔离配置是一种网络安全技术&#xff0c;用于在网络设备中实现不同端口之间的流量隔离和控制。以下是对端口隔离配置的详细解析&#xff1a; 基本概念&#xff1a;端口隔离技术允许用户将不同的端口加入到隔离组中&#xff0c;从而实现这些端口之间的二层数据隔离。这种技…

算法记录——链表

2.链表 2.1判断是否是回文链表 1.方法一&#xff1a;利用栈反转链表 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode…

Invalid Executable The executable contains bitcode

Invalid Executable The executable contains bitcode 升级xcode16后&#xff0c;打包上传testflight时三方库报错&#xff1a;Invalid Executable - The executable ***.app/Frameworks/xxx.framework/xxx contains bitcode. 解决方案&#xff1a; 执行一下指令删除该framew…

软件测试学习路线图

软件测试工程师是专门从事软件、系统或产品测试和评估的技术专业人士&#xff0c;确保它们符合既定标准并无任何缺陷。通过精心设计和执行测试计划&#xff0c;软件测试工程师发现 Bug、故障和需要改进的领域&#xff0c;从而提高最终产品的可靠性和性能。 软件测试工程师在软…

Awcing 799. 最长连续不重复子序列

Awcing 799. 最长连续不重复子序列 解题思路: 让我们找到一个数组中&#xff0c;最长的 不包含重复的数 的连续区间的长度。 最优解是双指针算法&#xff1a; 我们用 c n t [ i ] cnt[i] cnt[i]记录 i i i 这个整数在区间内出现的次数。(因为每个数的大小为 1 0 5 10^5 105, …

状态模式原理剖析

《状态模式原理剖析》 状态模式&#xff08;State Pattern&#xff09; 是一种行为设计模式&#xff0c;它允许对象在其内部状态改变时改变其行为。换句话说&#xff0c;当对象状态发生变化时&#xff0c;它的行为也会随之变化。 通过状态模式&#xff0c;可以消除通过 if-else…

从“可用”到“好用”,百度智能云如何做大模型的“超级工厂”?

如果说&#xff0c;过去两三年大模型处于造锤子阶段&#xff0c;那么今年&#xff0c;更多的则是考验钉钉子的能力&#xff0c;面对各类业务场景大模型是否能够有的放矢、一击必中&#xff0c;为千行百业深度赋能。 当前市场上&#xff0c;已经有200多把这样的锤子在疯狂找钉子…

【unity进阶知识1】最详细的单例模式的设计和应用,继承和不继承MonoBehaviour的单例模式,及泛型单例基类的编写

文章目录 前言一、不使用单例二、普通单例模式1、单例模式介绍实现步骤&#xff1a;单例模式分为饿汉式和懒汉式两种。 2、不继承MonoBehaviour的单例模式2.1、基本实现2.2、防止外部实例化对象2.3、最终代码 3、继承MonoBehaviour的单例模式3.1、基本实现3.2、自动创建和挂载单…

OCR 行驶证识别 离线识别

目录 正页识别 副页识别 全部识别 OCR 行驶证识别 离线识别 正页识别 副页识别 全部识别